Details
Empfehlungen
v1.0
Adriana Chechik SDXL

Adriana Chechik SDXL

1.3K
102
541
#woman
#Berühmtheit
#

A LoRA for Adriana Chechik.

Process

  • Images (71)

    • Focus

      • 30 "full" body (waist/knees up)

      • 17 upper body ( and head)

      • 18 close up (head and shoulders)

      • 6 weird angles/poses (range from "full" body to upper body)

    • Aspect ratio

      • 30 1:1

      • 41 3:>

    • Content (varied...)

      • faces (1 eyes closed, half smiling, 1 eyeglasses)

      • lighting

      • clothing

      • makeup

      • background

      • pose

    • Misc

      • I try to exclude any images that have a busy/complex scene/background. Abnormal clothing, hand gestures, etc. are cropped out when possible. My rule of thumb is that if I wouldn't want the image to be generated by the LoRA, I don't include it in the dataset. There are some exceptions to this rule, but it is a good starting point to trim the dataset.

      • As many duplicate clothing items, expressions, poses, pieces of jewelry, etc. are excluded as possible, but it can often be hard to avoid this.

      • Images are cropped by hand and left at whatever # of pixels achieves the desired final image. They are kept to 3:4, 4:3, or 1:1 aspect ratios.

      • Many others have commented that 71 images is unnecessary, and that 20 or so will do. I prefer to be in the 40-80 range.

  • Captions

    • All begin with "adriana chechik, a photo of a woman..."

    • I describe the clothing, jewelry, lighting, pose, angle, background, expression, makeup, and any other information I do not want showing up in the LoRA gens (abnormal hair color, for example) in sentence form.

    • I do not describe things I do want to show up in the LoRA, like eye color, hair color, skin tone, body proportions, etc.

    • I have experimented with adding a fake word "ohwx" to the captions with varying results. I did not do so for this LoRA.

  • Training Params

    • model: DreamshaperXL

    • text_encoder_lr: 0.000>

    • unet_lr: 0.000>

    • learning_rate: 0.000>

    • network_dim: 256

    • network_alpha: 1

    • lr_scheduler: constant

    • optimizer_type: Adafactor

    • train_batch_size: 1

    • dataset repeats: 20

    • epochs: 10 (sometimes up to 12 if I have a highly varied dataset)

    • max_train_steps: 20 10 # of images (so for this one, it was 20 10 71 = 14,200)

  • How is it so small?

    • After training is complete, I am left with a 1.7gb safetensors file. I use the kohya gui to resize the lora with a rank of 256. This spits out a ~18mb safetensors file that is nearly identical to the 1.7gb file in practice.

I'm sure I missed something here, so let me know if there's any other info that would be useful.

Übersetzung anzeigen

Bewertungen & Kommentare

5.0 /5
0 Bewertungen

Noch nicht genügend Bewertungen oder Rezensionen erhalten

no-data
Keine Daten
T
tomdvs
149
3.0K
Chatte mit dem Modell
Mitteilung
2024-06-08
Modell veröffentlichen
2023-08-08
Modellinformationen aktualisieren
Modelldetails
Typ
LORA
Veröffentlichungsdatum
2023-08-08
Basismodelle
SDXL 1.0
Auslösewörter
Adriana Chechik
Kopieren
Umfang der Lizenz
Source-Modell: civitai

1. Dieses Modell dient nur Lernzwecken. Urheber- und Auslegungsrechte liegen beim Originalautor.

2. Bist du der Originalautor eines Modells, kontaktiere uns bitte zur Authentifizierung über unsere offiziellen Kanäle. Wir schützen die Rechte aller Schöpfer. Hier klicken, um es zu verifizieren.

Umfang der Kreativlizenz
Online Generierung
Fusion durchführen
Download zulassen
Umfang der Business-Lizenz
Generierte Bilder können verkauft oder für kommerzielle Zwecke verwendet werden
Modelle können weiterverkauft oder nach der Fusion verkauft werden
QR Code
SeaArt App herunterladen
Setze deine KI-Kreativreise auf dem Mobilgerät fort