Details
Empfehlungen
v1.0
SPO-SD-v1-5_4k-p_10ep_LoRA_webui

SPO-SD-v1-5_4k-p_10ep_LoRA_webui

359
5
190
#Basismodell

Aesthetic Post-Training Diffusion Models from Generic Preferences with Step-by-step Preference

Arxiv Paper

Github Code

Project Page

Abstract

Generating visually appealing images is fundamental to modern text-to-image generation models. A potential solution to better aesthetics is direct preference optimization (DPO), which has been applied to diffusion models to improve general image quality including prompt alignment and aesthetics. Popular DPO methods propagate preference labels from clean image pairs to all the intermediate steps along the two generation trajectories. However, preference labels provided in existing datasets are blended with layout and aesthetic opinions, which would disagree with aesthetic preference. Even if aesthetic labels were provided (at substantial cost), it would be hard for the two-trajectory methods to capture nuanced visual differences at different steps.

To improve aesthetics economically, this paper uses existing generic preference data and introduces step-by-step preference optimization (SPO) that discards the propagation strategy and allows fine-grained image details to be assessed. Specifically, at each denoising step, we 1) sample a pool of candidates by denoising from a shared noise latent, 2) use a step-aware preference model to find a suitable win-lose pair to supervise the diffusion model, and 3) randomly select one from the pool to initialize the next denoising step. This strategy ensures that diffusion models focus on the subtle, fine-grained visual differences instead of layout aspect. We find that aesthetic can be significantly enhanced by accumulating these improved minor differences.

When fine-tuning Stable Diffusion v1.5 and SDXL, SPO yields significant improvements in aesthetics compared with existing DPO methods while not sacrificing image-text alignment compared with vanilla models. Moreover, SPO converges much faster than DPO methods due to the step-by-step alignment of fine-grained visual details. Code and model: https://rockeycoss.github.io/spo.github.io/

Model Description

This model is fine-tuned from runwayml/stable-diffusion-v1-5. It has been trained on 4,000 prompts for 10 epochs. This checkpoint is a LoRA checkpoint. For more information, please visit here

Citation

If you find our work useful, please consider giving us a star and citing our work.

@article{liang2024step,
  title={Aesthetic Post-Training Diffusion Models from Generic Preferences with Step-by-step Preference Optimization},
  author={Liang, Zhanhao and Yuan, Yuhui and Gu, Shuyang and Chen, Bohan and Hang, Tiankai and Cheng, Mingxi and Li, Ji and Zheng, Liang},
  journal={arXiv preprint arXiv:2406.04314},
  year={2024}
}

Übersetzung anzeigen

Bewertungen & Kommentare

-- /5
0 Bewertungen

Noch nicht genügend Bewertungen oder Rezensionen erhalten

no-data
Keine Daten
R
Chatte mit dem Modell
Mitteilung
2024-06-20
Modell veröffentlichen
2024-06-20
Modellinformationen aktualisieren
Modelldetails
Typ
LORA
Veröffentlichungsdatum
2024-06-20
Basismodelle
SD 1.5
Umfang der Lizenz
Source-Modell: civitai

1. Dieses Modell dient nur Lernzwecken. Urheber- und Auslegungsrechte liegen beim Originalautor.

2. Bist du der Originalautor eines Modells, kontaktiere uns bitte zur Authentifizierung über unsere offiziellen Kanäle. Wir schützen die Rechte aller Schöpfer. Hier klicken, um es zu verifizieren.

Umfang der Kreativlizenz
Online Generierung
Fusion durchführen
Download zulassen
Umfang der Business-Lizenz
Generierte Bilder können verkauft oder für kommerzielle Zwecke verwendet werden
Modelle können weiterverkauft oder nach der Fusion verkauft werden
QR Code
SeaArt App herunterladen
Setze deine KI-Kreativreise auf dem Mobilgerät fort