A lora model trained on the Engram dataset, 5 songs split, converted, captioned and trained.
use the genres.txt and instruments.txt for the identifiers - wedgeewoo/Riffusion-Textual-Inversion-template: Templates for musical textual inversion for riffusion (github.com)
Example - Stream Sprouts #11 by Wedgeewoo | Listen online for free on SoundCloud
Tips and Tricks - Use a weight of .8, the results come out much more cohesive when using the genres.txt identifiers.
Example 2 - Stream Sprouts #14 by Wedgeewoo | Listen online for free on SoundCloud
Prompt -
Complextro Tropical house song , reese bass, neuro bass, tuba, drop <lora:Engram:.75>
Steps: 30, Sampler: Euler a, CFG scale: 8.5, Seed: 3779202002, Size: 512x512, Model hash: 99a6eb51c1, Variation seed: 1752705851, Variation seed strength: 0.25, Tile X: True, Tile Y: False, Start Tiling From Step: 15, Stop Tiling After Step: -1, Wildcard prompt: "__genres__, reese bass, neuro bass, tuba, drop <lora:Engram:.75>"
Wedgewoo - Engram : LoRa model for Riffusion. - YouTube
1. Dieses Modell dient nur Lernzwecken. Urheber- und Auslegungsrechte liegen beim Originalautor.
2. Bist du der Originalautor eines Modells, kontaktiere uns bitte zur Authentifizierung über unsere offiziellen Kanäle. Wir schützen die Rechte aller Schöpfer. Hier klicken, um es zu verifizieren.
