Detalles
Recomendado
v1.0
MistoLine

MistoLine

0
0
0
#Arte
#Modelo Base
#Red de control
#stablediffusion
#SDXL

Control every line!

MistoLine: A Versatile and Robust SDXL-ControlNet Model for Adaptable Line Art Conditioning

MistoLine is an SDXL-ControlNet model that can adapt to any type of line art input, demonstrating high accuracy and excellent stability. It can generate high-quality images (with a short side greater than 1024px) based on user-provided line art of various types, including hand-drawn sketches, different ControlNet line preprocessors, and model-generated outlines. MistoLine eliminates the need to select different ControlNet models for different line preprocessors, as it exhibits strong generalization capabilities across diverse line art conditions.

We developed MistoLine by employing a novel line preprocessing algorithm (Anyline) and retraining the ControlNet model based on the Unet of stabilityai/stable-diffusion-xl-base-1.0, along with innovations in large model training engineering. MistoLine showcases superior performance across different types of line art inputs, surpassing existing ControlNet models in terms of detail restoration, prompt alignment, and stability, particularly in more complex scenarios.

MistoLine maintains consistency with the ControlNet architecture released by lllyasviel, as illustrated in the following schematic diagram:

reference:https://github.com/lllyasviel/ControlNet

More information about ControlNet can be found in the following references:

https://github.com/lllyasviel/ControlNet

https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl

The model is compatible with most SDXL models, except for PlaygroundV2.5 and CosXL. It can be used in conjunction with LCM and other ControlNet models. We have open-sourced the corresponding model weight files for non-commercial use by individual users.

Apply with different line preprocessor

Mistoline compere with other Controlnet

Application examples

Sketch rendering

The following case only utilized MistoLine as the controlnet:

Model rendering

The following case only utilized Anyline as the preprocessor and MistoLine as the controlnet.

ComfyUI Recommended Parameters:
sampler steps:30

CFG:7.0

sampler_name:dpmpp_2m_sde

scheduler:karras

denoise:0.93

controlnet_strength:1.0

stargt_percent:0.0

end_percent:0.9

Checkpoints

• mistoLine_rank256.safetensors : General usage version, for ComfyUI and AUTOMATIC1111-WebUI.

• mistoLine_fp16.safetensors : FP16 weights, for ComfyUI and AUTOMATIC1111-WebUI.

ComfyUI Usage

中国(大陆地区)便捷下载地址:

链接:https://pan.baidu.com/s/1DbZWmGJ40Uzr3Iz9RNBG_w?pwd=8mzs

提取码:8mzs

Citation
@misc{

title={Adding Conditional Control to Text-to-Image Diffusion Models},

author={Lvmin Zhang, Anyi Rao, Maneesh Agrawala},

year={2023},

eprint={2302.05543},

archivePrefix={arXiv},

primaryClass={cs.CV}

}

Ver traducción

Calificaciones y comentarios

-- /5
0 calificaciones

Aún no se han recibido suficientes calificaciones o comentarios

no-data
No hay datos disponibles
Anuncio
2024-07-25
Publicar modelo
2024-05-07
Actualizar información del modelo
Detalles del modelo
Tipo
Controlnet
Fecha de lanzamiento
2024-05-07
Modelo básico
SDXL 1.0
Alcance de la licencia
Fuente: civitai

1. Los derechos de los modelos republicados pertenecen a los creadores originales.

2. Si los creadores originales desean reclamar su modelo, contacten al personal de SeaArt AI a través de canales oficiales. Haz clic para reclamar

Alcance de la licencia de creación
Transmisión en vivo
Fusión
Permitir descargas
Licencia comercial
Las imágenes generadas se pueden vender o usar con fines comerciales
Permitir reventa de modelos o su venta tras la integración
QR Code
Descargar la aplicación SeaArt
Continúa tu viaje de creación con IA en móvil