Detalles
Recomendado
FP8 Version
FP16 Version
Dwayne Johnson aka The Rock FLUX Dev Fine-Tuning / DreamBooth Model for Educational and Research Purposes - Dwayne Johnson aka The Rock FLUX Dev LoRA Model for Educational and Research Purposes - Full Tutorial

Dwayne Johnson aka The Rock FLUX Dev Fine-Tuning / DreamBooth Model for Educational and Research Purposes - Dwayne Johnson aka The Rock FLUX Dev LoRA Model for Educational and Research Purposes - Full Tutorial

176
15
82
#celebridad
#FLUX

I am sharing how I trained this model with full details and even the dataset: please read entire post very carefully.

This model is purely trained for educational and research purposes only for SFW and ethical image generation.

The workflow and the config used in this tutorial can be used to train clothing, items, animals, pets, objects, styles, simply anything.

The uploaded images have SwarmUI metadata and can be re-generated exactly. For generations FP16 model used but FP8 should yield almost same quality. Don't forget to have used yolo face masking model in prompts.

How To Use

Download model into diffusion_models of the SwarmUI. Then you need to use Clip-L and T5-XXL models as well. I recommend T5-XXL FP16 or Scaled FP8 version.

A newest fully public tutorial here for how to use :

I have trained both FLUX LoRA and Fine-Tuning / DreamBooth model.

Activation token / trigger word : ohwx man

Each training was up to 200 epochs and once every 10 epoch checkpoints saved and shared on below Hugging Face Repo : https://huggingface.co/MonsterMMORPG/Model_Training_Experiments_As_A_Baseline

This model contains experimental results comparing Fine-Tuning / DreamBooth and LoRA training approaches.

Additional Resources

Environment Setup

  • Kohya GUI Version: 021c6f5ae3055320a56967284e759620c349aa56

  • Torch: 2.5.1

  • xFormers: 0.0.28.post3

Dataset Information

  • Resolution: 1024x1024

  • Dataset Size: 28 images

  • Captions: "ohwx man" (nothing else)

  • Activation Token/Trigger Word: "ohwx man"

Fine-Tuning / DreamBooth Experiment

Configuration

  • Config File: 48GB_GPU_28200MB_6.4_second_it_Tier_1.json

  • Training: Up to 200 epochs with consistent config

  • Optimal Result: Epoch 170 (subjective assessment)

Results

LoRA Experiment

Configuration

  • Config File: Rank_1_29500MB_8_85_Second_IT.json

  • Training: Up to 200 epochs

  • Optimal Result: Epoch 160 (subjective assessment)

Results

Comparison Results

Key Observations

  • LoRA demonstrates excellent realism but shows more obvious overfitting when generating stylized images.

  • Fine-Tuning / DreamBooth is better than LoRA as expected.

Model Naming Convention

Fine-Tuning Models

  • Dwayne_Johnson_FLUX_Fine_Tuning-000010.safetensors

    • 10 epochs

    • 280 steps (28 images × 10 epochs)

    • Batch size: 1

    • Resolution: 1024x1024

  • Dwayne_Johnson_FLUX_Fine_Tuning-000020.safetensors

    • 20 epochs

    • 560 steps (28 images × 20 epochs)

    • Batch size: 1

    • Resolution: 1024x1024

LoRA Models

  • Dwayne_Johnson_FLUX_LoRA-000010.safetensors

    • 10 epochs

    • 280 steps (28 images × 10 epochs)

    • Batch size: 1

    • Resolution: 1024x1024

  • Dwayne_Johnson_FLUX_LoRA-000020.safetensors

    • 20 epochs

    • 560 steps (28 images × 20 epochs)

    • Batch size: 1

    • Resolution: 1024x1024

Ver traducción

Calificaciones y comentarios

-- /5
0 calificaciones

Aún no se han recibido suficientes calificaciones o comentarios

avatar
Conversar con el modelo
Anuncio
2024-11-02
Publicar modelo
2024-11-05
Actualizar información del modelo
Detalles del modelo
Tipo
Checkpoint
Fecha de lanzamiento
2024-11-02
Modelo básico
Flux.1 D
Palabra activadora
ohwx man
Copiar
Introducción de versión

For Full Details, Training Dataset, Tutorial, Guide, Configs, Training Json Files, Workflows, Installers, Resources and All Checkpoints > https://huggingface.co/MonsterMMORPG/Model_Training_Experiments_As_A_Baseline

This is FP8 converted version of original FP16 training

Alcance de la licencia
Fuente: civitai

1. Los derechos de los modelos republicados pertenecen a los creadores originales.

2. Si los creadores originales desean reclamar su modelo, contacten al personal de SeaArt AI a través de canales oficiales. Haz clic para reclamar

Alcance de la licencia de creación
Transmisión en vivo
Fusión
Permitir descargas
Licencia comercial
Las imágenes generadas se pueden vender o usar con fines comerciales
Permitir reventa de modelos o su venta tras la integración
QR Code
Descargar la aplicación SeaArt
Continúa tu viaje de creación con IA en móvil