From stable_diffusion import StableDiffusionPipeline import torch from PIL impor
![from stable_diffusion import StableDiffusionPipeline
import torch
from PIL import Image
# Load the Stable Diffusion model
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-4")
# Define the prompt for the airplane scene
prompt = (
"Inside a luxurious airplane cabin, the go-go dancer performs a hilariously energetic dance for a Bitcoin trader. She’s wearing a vibrant outfit with exaggerated Bitcoin designs and accessories. Her dance moves are exaggerated and playful, and she makes comedic facial expressions while making eye contact with the trader. The trader, seated comfortably, is laughing and clapping, clearly entertained. The cabin is decorated with bright reds, pinks, and golds, and the lighting is vibrant and warm, emphasizing the fun and cheeky interaction."
)
# Configuration settings
clip_guidance_scale = 16 # Slightly lower to add a playful feel
hr_scale = 3.0 # Balanced resolution
hr_upscaler = "R-ESRGAN"
latent_shift = torch.randn(1, 4, 64, 64) * 0.03 # Slight variation for humor
cross_attention_strength = 1.5 # Focus on playful details
shallow_depth_of_field = True # Emphasize interaction
lighting_style = "bright and colorful" # Vibrant lighting effects
color_match_strength = 1.5 # Enhanced color matching
perlin_noise_scale = 0.03 # Subtle noise for texture
fractal_noise = False
# Generate the image
image = pipe(
prompt=prompt,
clip_guidance_scale=clip_guidance_scale,
hr_scale=hr_scale,
hr_upscaler=hr_upscaler,
latent_shift=latent_shift,
cross_attention_strength=cross_attention_strength,
shallow_depth_of_field=shallow_depth_of_field,
lighting_style=lighting_style,
color_match_strength=color_match_strength,
noise="perlin",
noise_scale=perlin_noise_scale,
fractal_noise=fractal_noise
).images[0]
# Save the generated image
image.save("airplane_dancer_performance.png")](https://image.cdn2.seaart.me/2024-08-26/cr6eti5e878c73fip02g-2/dd4ced3d99fe8ad03e7b7bbbd5531a47_high.webp)
Generation Data
Records
Prompts
Copy
from stable_diffusion import StableDiffusionPipeline
import torch
from PIL import Image
# Load the Stable Diffusion model
pipe = StableDiffusionPipeline
.
from_pretrained("stable-diffusion-v1-4")
# Define the prompt for the airplane scene
prompt = (
"Inside a luxurious airplane cabin
,
the go-go dancer performs a hilariously energetic dance for a Bitcoin trader
.
She’s wearing a vibrant outfit with exaggerated Bitcoin designs and accessories
.
Her dance moves are exaggerated and playful
,
and she makes comedic facial expressions while making eye contact with the trader
.
The trader
,
seated comfortably
,
is laughing and clapping
,
clearly entertained
.
The cabin is decorated with bright reds
,
pinks
,
and golds
,
and the lighting is vibrant and warm
,
emphasizing the fun and cheeky interaction
.
"
)
# Configuration settings
clip_guidance_scale = 16 # Slightly lower to add a playful feel
hr_scale = 3
.
0 # Balanced resolution
hr_upscaler = "R-ESRGAN"
latent_shift = torch
.
randn(1
,
4
,
64
,
64) * 0
.
03 # Slight variation for humor
cross_attention_strength = 1
.
5 # Focus on playful details
shallow_depth_of_field = True # Emphasize interaction
lighting_style = "bright and colorful" # Vibrant lighting effects
color_match_strength = 1
.
5 # Enhanced color matching
perlin_noise_scale = 0
.
03 # Subtle noise for texture
fractal_noise = False
# Generate the image
image = pipe(
prompt=prompt
,
clip_guidance_scale=clip_guidance_scale
,
hr_scale=hr_scale
,
hr_upscaler=hr_upscaler
,
latent_shift=latent_shift
,
cross_attention_strength=cross_attention_strength
,
shallow_depth_of_field=shallow_depth_of_field
,
lighting_style=lighting_style
,
color_match_strength=color_match_strength
,
noise="perlin"
,
noise_scale=perlin_noise_scale
,
fractal_noise=fractal_noise
)
.
images[0]
# Save the generated image
image
.
save("airplane_dancer_performance
.
png")
INFO
Checkpoint & LoRA

Checkpoint
SeaArt Infinity
#Realistic
#SeaArt Infinity
0 comment
0
0
0