Détails
Recommandé
v1.0
MistoLine

MistoLine

0
0
0
#Art
#Modèle de base
#Contorlnet
#stablediffusion
#SDXL

Control every line!

MistoLine: A Versatile and Robust SDXL-ControlNet Model for Adaptable Line Art Conditioning

MistoLine is an SDXL-ControlNet model that can adapt to any type of line art input, demonstrating high accuracy and excellent stability. It can generate high-quality images (with a short side greater than 1024px) based on user-provided line art of various types, including hand-drawn sketches, different ControlNet line preprocessors, and model-generated outlines. MistoLine eliminates the need to select different ControlNet models for different line preprocessors, as it exhibits strong generalization capabilities across diverse line art conditions.

We developed MistoLine by employing a novel line preprocessing algorithm (Anyline) and retraining the ControlNet model based on the Unet of stabilityai/stable-diffusion-xl-base-1.0, along with innovations in large model training engineering. MistoLine showcases superior performance across different types of line art inputs, surpassing existing ControlNet models in terms of detail restoration, prompt alignment, and stability, particularly in more complex scenarios.

MistoLine maintains consistency with the ControlNet architecture released by lllyasviel, as illustrated in the following schematic diagram:

reference:https://github.com/lllyasviel/ControlNet

More information about ControlNet can be found in the following references:

https://github.com/lllyasviel/ControlNet

https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl

The model is compatible with most SDXL models, except for PlaygroundV2.5 and CosXL. It can be used in conjunction with LCM and other ControlNet models. We have open-sourced the corresponding model weight files for non-commercial use by individual users.

Apply with different line preprocessor

Mistoline compere with other Controlnet

Application examples

Sketch rendering

The following case only utilized MistoLine as the controlnet:

Model rendering

The following case only utilized Anyline as the preprocessor and MistoLine as the controlnet.

ComfyUI Recommended Parameters:
sampler steps:30

CFG:7.0

sampler_name:dpmpp_2m_sde

scheduler:karras

denoise:0.93

controlnet_strength:1.0

stargt_percent:0.0

end_percent:0.9

Checkpoints

• mistoLine_rank256.safetensors : General usage version, for ComfyUI and AUTOMATIC1111-WebUI.

• mistoLine_fp16.safetensors : FP16 weights, for ComfyUI and AUTOMATIC1111-WebUI.

ComfyUI Usage

中国(大陆地区)便捷下载地址:

链接:https://pan.baidu.com/s/1DbZWmGJ40Uzr3Iz9RNBG_w?pwd=8mzs

提取码:8mzs

Citation
@misc{

title={Adding Conditional Control to Text-to-Image Diffusion Models},

author={Lvmin Zhang, Anyi Rao, Maneesh Agrawala},

year={2023},

eprint={2302.05543},

archivePrefix={arXiv},

primaryClass={cs.CV}

}

Voir la traduction

Notes & Commentaires

-- /5
0 Notes

Pas encore reçu suffisamment d'évaluations ou de commentaires

no-data
Aucune donnée disponible
Annonce
2024-07-25
Publier un modèle
2024-05-07
Mettre à jour les informations du modèle
Détails du modèle
Type
Controlnet
Temps de Publication
2024-05-07
Modèle Basique
SDXL 1.0
Périmètre de la licence
Source: civitai

1. Modèle partagé uniquement à l'apprentissage et au partage. Droits d'auteur et interprétation finale réservés à l'auteur original.

2. Auteur souhaitant revendiquer le modèle : Contactez officiellement SeaArt AI pour l'authentification. Nous protégeons les droits de chaque auteur. Cliquer pour revendiquer

Périmètre de la licence de création
Génération d'images en ligne
Effectuer une fusion
Autoriser le téléchargement
Périmètre de la licence de commerce
Les images générées peuvent être vendues ou utilisées à des fins commerciales
La revente ou la vente après fusion du modèle est autorisée.
QR Code
Télécharger l'App SeaArt
Poursuivez votre voyage de création AI sur mobile