Détails
Recommandé
V1
Cambodia Angkor Bas Relief

Cambodia Angkor Bas Relief

522
2
63
#Style

This Lora model is trained on photos I had taken of the intricate bas reliefs from the exterior walls of Bayon temple at the center of Angkor Thom complex in Angkor Archaeological Park as well as those still found in remote unrestored Banteay Chmmar (which rivals the famous Angkor Wat in size) near the Thai border - despite their considerable distance apart, both temples are related as a section of a panel depicts a royal procession from Bayon to Banteay Chmmar.

This model is a research experiment to evaluate how Diffusion models perform against atypical image inputs (unlike typical image inputs with a distinct subject and background that are easily tagged, the Angkor bas reliefs are intricate and encompass multiple subjects and compositional perspectives that are difficult to tag), and explore the potential application of Diffusion models in archaeological restoration.

I was inspired at my visit to Banteay Chmmar, where the restoration work was largely undertaken by local villagers due to its remote location. In addition to funding challenges, restoration work also stalled when sections of bas relief are missing (most likely looted). The current way is to appeal to foreign museums who may have pieces or historical photographs of when the bas reliefs were more intact somewhere in their collections and archives. But that is costly and time consuming and requires cross-border co-ordination, which is difficult for the villagers. I think there is uninvestigated potential in utilizing Diffusion models trained on existing bas reliefs (e.g. Inpainting and other techniques) to reconstruct what was potentially there, as a tool in archaeological restoration work.

LoRA weights

Higher weights both shifts the composition towards the "register"-based perspective of the Angkorian bas-reliefs as well as "flattens" contrasty 3D-relief into bas-relief.

As majority of the bas-reliefs depict people, higher weights also introduce more people into the image. This leads to interesting effect where composition of group prompts (e.g. villagers") get more complex with higher weights.

Voir la traduction

Notes & Commentaires

-- /5
0 Notes

Pas encore reçu suffisamment d'évaluations ou de commentaires

no-data
Aucune donnée disponible
W
Chatter avec le modèle
Annonce
2024-07-03
Publier un modèle
2024-07-03
Mettre à jour les informations du modèle
Détails du modèle
Type
LORA
Temps de Publication
2024-07-03
Modèle Basique
SDXL 1.0
Mots Déclencheurs
angkor
bas relief
Copier
Introduction de version

V1. Initial version of the model trained on 85 perspective-corrected images.

Périmètre de la licence
Source: civitai

1. Modèle partagé uniquement à l'apprentissage et au partage. Droits d'auteur et interprétation finale réservés à l'auteur original.

2. Auteur souhaitant revendiquer le modèle : Contactez officiellement SeaArt AI pour l'authentification. Nous protégeons les droits de chaque auteur. Cliquer pour revendiquer

Périmètre de la licence de création
Génération d'images en ligne
Effectuer une fusion
Autoriser le téléchargement
Périmètre de la licence de commerce
Les images générées peuvent être vendues ou utilisées à des fins commerciales
La revente ou la vente après fusion du modèle est autorisée.
QR Code
Télécharger l'App SeaArt
Poursuivez votre voyage de création AI sur mobile