Détails
Recommandé
v1.0
FLUX.1-dev-ControlNet-Union-Pro-2.0(fp8)

FLUX.1-dev-ControlNet-Union-Pro-2.0(fp8)

464
111
527
#Contorlnet
#Pose
#canny
#outil
#depth
#FLUX
#FLUX

Quantizing FLUX.1-dev-ControlNet-Union-Pro-2.0 to FP8: A Memory-Saving Solution

i appreciate your support

if u couldn't its okay (give it like and enjoy)

😉 https://huggingface.co/ABDALLALSWAITI/FLUX.1-dev-ControlNet-Union-Pro-2.0-fp8

a good reference for parameters

  • Canny: controlnet_conditioning_scale=0.7, control_guidance_end=0.8.

  • Depth: use depth-anything, controlnet_conditioning_scale=0.8, control_guidance_end=0.8.

  • Pose: use DWPose, controlnet_conditioning_scale=0.9, control_guidance_end=0.65.

  • Gray: use Color, controlnet_conditioning_scale=0.9, control_guidance_end=0.8.

  • Canny, controlnet_conditioning_scale=0.7, control_guidance_end=0.8.


As an AI enthusiast with limited computational resources, I recently faced a common challenge when working with the powerful Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro-2.0 model. Despite its impressive capabilities for image generation and manipulation across multiple control types, my system quickly ran out of memory when attempting to use it at full precision.

Rather than giving up on this versatile tool, I leveraged my basic coding skills to implement an effective solution: quantizing the model to FP8 precision. This technique significantly reduced the memory footprint while maintaining remarkably good performance.

The Memory Challenge

The original FLUX.1-dev-ControlNet-Union-Pro-2.0 model, while powerful for pose, depth, and canny edge-based image generation, requires substantial GPU resources. Many users with consumer-grade hardware find themselves hitting memory limitations when attempting to run these advanced models at full precision.

My FP8 Quantization Solution

Despite having only modest coding experience, I researched quantization techniques and successfully implemented FP8 compression for the model. To my delight, this quantized version works perfectly for my needs, enabling various ControlNet workflows without sacrificing noticeable quality.

Using The Quantized Model

The quantized model supports all the same control types as the original, including:

  • Pose control for generating images with specific body positions

  • Depth mapping for 3D-aware image creation

  • Canny edge detection for maintaining structural integrity

Simply drop any reference image into the workflow, select your desired control type, and generate impressive results with substantially lower memory requirements.

Enhanced Prompting with OllamaGemini

To further improve my workflows, I've incorporated my custom OllamaGemini node for ComfyUI, which helps generate optimal prompts tailored to specific needs. This combination of the memory-efficient quantized model and intelligent prompt generation creates a powerful pipeline for creative image manipulation.

For those interested in the prompt generation capabilities, my OllamaGemini node repository is available at: https://github.com/al-swaiti/ComfyUI-OllamaGemini

Alternatives for Users with High-End Hardware

If you're fortunate enough to have access to more powerful GPU resources, the original unquantized model from Shakker-Labs remains an excellent option, offering potentially higher fidelity results at the cost of increased memory usage.

Looking Forward

As I continue refining these tools and techniques, I welcome feedback from the community. If you find these workflows helpful, please consider showing your support with a 👍 on the project. I'm actively seeking opportunities in this field and deeply appreciate any encouragement as I develop these resources.

Feel free to experiment with the model for your creative projects – whether you're using the memory-efficient quantized version or the original full-precision implementation!

Voir la traduction

Notes & Commentaires

-- /5
0 Notes

Pas encore reçu suffisamment d'évaluations ou de commentaires

no-data
Aucune donnée disponible
Chatter avec le modèle
Annonce
2025-04-22
Publier un modèle
2025-04-22
Mettre à jour les informations du modèle
Détails du modèle
Type
Checkpoint
Temps de Publication
2025-04-22
Modèle Basique
Flux.1 D
Périmètre de la licence
Source: civitai

1. Modèle partagé uniquement à l'apprentissage et au partage. Droits d'auteur et interprétation finale réservés à l'auteur original.

2. Auteur souhaitant revendiquer le modèle : Contactez officiellement SeaArt AI pour l'authentification. Nous protégeons les droits de chaque auteur. Cliquer pour revendiquer

Périmètre de la licence de création
Génération d'images en ligne
Effectuer une fusion
Autoriser le téléchargement
Périmètre de la licence de commerce
Les images générées peuvent être vendues ou utilisées à des fins commerciales
La revente ou la vente après fusion du modèle est autorisée.
QR Code
Télécharger l'App SeaArt
Poursuivez votre voyage de création AI sur mobile