Détails
Recommandé
FP8 Version
FP16 Version
Dwayne Johnson aka The Rock FLUX Dev Fine-Tuning / DreamBooth Model for Educational and Research Purposes - Dwayne Johnson aka The Rock FLUX Dev LoRA Model for Educational and Research Purposes - Full Tutorial

Dwayne Johnson aka The Rock FLUX Dev Fine-Tuning / DreamBooth Model for Educational and Research Purposes - Dwayne Johnson aka The Rock FLUX Dev LoRA Model for Educational and Research Purposes - Full Tutorial

176
15
82
#célébrité
#FLUX

I am sharing how I trained this model with full details and even the dataset: please read entire post very carefully.

This model is purely trained for educational and research purposes only for SFW and ethical image generation.

The workflow and the config used in this tutorial can be used to train clothing, items, animals, pets, objects, styles, simply anything.

The uploaded images have SwarmUI metadata and can be re-generated exactly. For generations FP16 model used but FP8 should yield almost same quality. Don't forget to have used yolo face masking model in prompts.

How To Use

Download model into diffusion_models of the SwarmUI. Then you need to use Clip-L and T5-XXL models as well. I recommend T5-XXL FP16 or Scaled FP8 version.

A newest fully public tutorial here for how to use :

I have trained both FLUX LoRA and Fine-Tuning / DreamBooth model.

Activation token / trigger word : ohwx man

Each training was up to 200 epochs and once every 10 epoch checkpoints saved and shared on below Hugging Face Repo : https://huggingface.co/MonsterMMORPG/Model_Training_Experiments_As_A_Baseline

This model contains experimental results comparing Fine-Tuning / DreamBooth and LoRA training approaches.

Additional Resources

Environment Setup

  • Kohya GUI Version: 021c6f5ae3055320a56967284e759620c349aa56

  • Torch: 2.5.1

  • xFormers: 0.0.28.post3

Dataset Information

  • Resolution: 1024x1024

  • Dataset Size: 28 images

  • Captions: "ohwx man" (nothing else)

  • Activation Token/Trigger Word: "ohwx man"

Fine-Tuning / DreamBooth Experiment

Configuration

  • Config File: 48GB_GPU_28200MB_6.4_second_it_Tier_1.json

  • Training: Up to 200 epochs with consistent config

  • Optimal Result: Epoch 170 (subjective assessment)

Results

LoRA Experiment

Configuration

  • Config File: Rank_1_29500MB_8_85_Second_IT.json

  • Training: Up to 200 epochs

  • Optimal Result: Epoch 160 (subjective assessment)

Results

Comparison Results

Key Observations

  • LoRA demonstrates excellent realism but shows more obvious overfitting when generating stylized images.

  • Fine-Tuning / DreamBooth is better than LoRA as expected.

Model Naming Convention

Fine-Tuning Models

  • Dwayne_Johnson_FLUX_Fine_Tuning-000010.safetensors

    • 10 epochs

    • 280 steps (28 images × 10 epochs)

    • Batch size: 1

    • Resolution: 1024x1024

  • Dwayne_Johnson_FLUX_Fine_Tuning-000020.safetensors

    • 20 epochs

    • 560 steps (28 images × 20 epochs)

    • Batch size: 1

    • Resolution: 1024x1024

LoRA Models

  • Dwayne_Johnson_FLUX_LoRA-000010.safetensors

    • 10 epochs

    • 280 steps (28 images × 10 epochs)

    • Batch size: 1

    • Resolution: 1024x1024

  • Dwayne_Johnson_FLUX_LoRA-000020.safetensors

    • 20 epochs

    • 560 steps (28 images × 20 epochs)

    • Batch size: 1

    • Resolution: 1024x1024

Voir la traduction

Notes & Commentaires

-- /5
0 Notes

Pas encore reçu suffisamment d'évaluations ou de commentaires

no-data
Aucune donnée disponible
avatar
Chatter avec le modèle
Annonce
2024-11-02
Publier un modèle
2024-11-05
Mettre à jour les informations du modèle
Détails du modèle
Type
Checkpoint
Temps de Publication
2024-11-02
Modèle Basique
Flux.1 D
Mots Déclencheurs
ohwx man
Copier
Introduction de version

For Full Details, Training Dataset, Tutorial, Guide, Configs, Training Json Files, Workflows, Installers, Resources and All Checkpoints > https://huggingface.co/MonsterMMORPG/Model_Training_Experiments_As_A_Baseline

This is FP8 converted version of original FP16 training

Périmètre de la licence
Source: civitai

1. Modèle partagé uniquement à l'apprentissage et au partage. Droits d'auteur et interprétation finale réservés à l'auteur original.

2. Auteur souhaitant revendiquer le modèle : Contactez officiellement SeaArt AI pour l'authentification. Nous protégeons les droits de chaque auteur. Cliquer pour revendiquer

Périmètre de la licence de création
Génération d'images en ligne
Effectuer une fusion
Autoriser le téléchargement
Périmètre de la licence de commerce
Les images générées peuvent être vendues ou utilisées à des fins commerciales
La revente ou la vente après fusion du modèle est autorisée.
QR Code
Télécharger l'App SeaArt
Poursuivez votre voyage de création AI sur mobile