Détails
Recommandé
v1
decoder-v1
alpha3
decoder-alpha3
alpha2
alpha1
decoder-alpha1
alpha0
decoder-alpha0
pre-alpha1
pre-alpha0
decoder-pre-alpha0
SoteDiffusion Wuerstchen3

SoteDiffusion Wuerstchen3

4
1
0
#Anime
#Modèle de base

New version is out: https://civitai.com/models/628865/sotediffusion-v2

Anime finetune of Würstchen V3.

This release is sponsored by fal.ai/grants

Trained on 6M images for 3 epochs using 8x A100 80G GPUs.

This model can be used via API with Fal.AI

For more details: https://fal.ai/models/fal-ai/stable-cascade/sote-diffusion


Please refer to Huggingface for SD.Next UI, Diffusers or UNet models:
https://huggingface.co/Disty0/sotediffusion-wuerstchen3
CivitAI page has only the ComfyUI checkpoint models.

Inference Parameters:

Download the Main model (8.14 GB file):

https://civitai.com/api/download/models/563950?type=Model&format=SafeTensor&size=pruned&fp=fp16


Download the Decoder model (4.24 GB file):

https://civitai.com/api/download/models/563892?type=Model&format=SafeTensor&size=pruned&fp=fp16

Positives:

newest, extremely aesthetic, best quality,

Negatives:

very displeasing, worst quality, monochrome, realistic, oldest, loli,

Main:

Sampler: DDPM or DPMPP 2M with SGM Uniform
CFG: 7
Steps: 30 or 40

Decoder:

Sampler: Euler a Karras
CFG: 1 or 1.2
Steps: 10

Compression: 42 (or 32 to 64)

Resolution: 1024x1536, 2048x1152.

Anything works as long as it's a multiply of 128.

Training:

Software used: Kohya SD-Scripts with Stable Cascade branch.
https://github.com/kohya-ss/sd-scripts/tree/stable-cascade

GPU used: 8x Nvidia A100 80GB
GPU hours: 220

Base

parameters | value

  • amp | bf16

  • weights | fp32

  • save weights | fp16

  • resolution | 1024x1024

  • effective batch size | 128

  • unet learning rate | 1e-5

  • te learning rate | 4e-6

  • optimizer | Adafactor

  • images | 6M

  • epochs | 3

Final

parameters | value

  • amp | bf16

  • weights | fp32

  • save weights | fp16

  • resolution | 1024x1024

  • effective batch size | 128

  • unet learning rate | 4e-6

  • te learning rate | none

  • optimizer | Adafactor

  • images | 120K

  • epochs | 16

Dataset:

GPU used for captioning: 1x Intel ARC A770 16GB
GPU hours: 350

Model used for captioning: SmilingWolf/wd-swinv2-tagger-v3

Model used for text: llava-hf/llava-1.5-7b-hf

Command:

python /mnt/DataSSD/AI/Apps/kohya_ss/sd-scripts/finetune/tag_images_by_wd14_tagger.py --model_dir "/mnt/DataSSD/AI/models/wd14_tagger_model" --repo_id "SmilingWolf/wd-swinv2-tagger-v3" --recursive --remove_underscore --use_rating_tags --character_tags_first --character_tag_expand --append_tags --onnx --caption_separator ", " --general_threshold 0.35 --character_threshold 0.50 --batch_size 4 --caption_extension ".txt" ./


dataset name | total images

  • newest : 1.85M

  • recent : 1.38M

  • mid : 993K

  • early : 566K

  • oldest : 160K

  • pixiv : 344K

  • visual novel cg : 231K

  • anime wallpaper : 105K

  • Total: 5.628.499 images

Note:

  • Smallest size is 1280x600 / 768.000 pixels

  • Deduped based on image similarity using czkawka-cli

  • Around 120K very high quality images got intentionally duplicated 5 times, making the total image count 6.2M


Tags:

Tag Format:

Model is trained with random tag order but this is the order in the dataset if you are interested:

aesthetic tags, quality tags, date tags, custom tags, rating tags, character, series, rest of the tags

Date:

  • newest : 2022 to 2024

  • recent : 2019 to 2021

  • mid : 2015 to 2018

  • early : 2011 to 2014

  • oldest : 2005 to 2010

Aesthetic Tags:

Model used: shadowlilac/aesthetic-shadow-2

  • score > 0.90 : extremely aesthetic

  • score > 0.80 : very aesthetic

  • score > 0.70 : aesthetic

  • score > 0.50 : slightly aesthetic

  • score > 0.40 : not displeasing

  • score > 0.30 : not aesthetic

  • score > 0.25 : slightly displeasing

  • score > 0.10 : displeasing

  • rest of them : very displeasing

Quality Tags:

Model used: https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/models/aes-B32-v0.pth

  • score > 0.980 : best quality

  • score > 0.900 : high quality

  • score > 0.750 : great quality

  • score > 0.500 : medium quality

  • score > 0.250 : normal quality

  • score > 0.125 : bad quality

  • score > 0.025 : low quality

  • rest of them : worst quality

Rating Tags:

  • general

  • sensitive

  • nsfw

  • explicit nsfw

Custom Tags:

  • image boards: date,

  • text: The text says "text",

  • characters: character, series

  • pixiv: art by Display_Name,

  • visual novel cg: Full_VN_Name (short_3_letter_name), visual novel cg,

  • anime wallpaper: date, anime wallpaper,

License

SoteDiffusion models falls under Fair AI Public License 1.0-SD license, which is compatible with Stable Diffusion models’ license. Key points:

  • 1. Modification Sharing: If you modify SoteDiffusion models, you must share both your changes and the original license.

  • 2. Source Code Accessibility: If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.

  • 3. Distribution Terms: Any distribution must be under this license or another with similar rules.

  • 4. Compliance: Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.

Notes: Anything not covered by Fair AI license is inherited from Stability AI Non-Commercial license.

Voir la traduction

Notes & Commentaires

-- /5
0 Notes

Pas encore reçu suffisamment d'évaluations ou de commentaires

no-data
Aucune donnée disponible
avatar
Disty0
18
247
Chatter avec le modèle
Annonce
2024-03-22
Publier un modèle
2024-06-10
Mettre à jour les informations du modèle
Détails du modèle
Type
Checkpoint
Temps de Publication
2024-06-10
Modèle Basique
Stable Cascade
Introduction de version
  • This release is sponsored by fal.ai/grants

  • Trained on 6M images for 3 epochs using 8x A100 80G GPUs.

Périmètre de la licence
Source: civitai

1. Modèle partagé uniquement à l'apprentissage et au partage. Droits d'auteur et interprétation finale réservés à l'auteur original.

2. Auteur souhaitant revendiquer le modèle : Contactez officiellement SeaArt AI pour l'authentification. Nous protégeons les droits de chaque auteur. Cliquer pour revendiquer

Périmètre de la licence de création
Génération d'images en ligne
Effectuer une fusion
Autoriser le téléchargement
Périmètre de la licence de commerce
Les images générées peuvent être vendues ou utilisées à des fins commerciales
La revente ou la vente après fusion du modèle est autorisée.
QR Code
Télécharger l'App SeaArt
Poursuivez votre voyage de création AI sur mobile