Détails
Recommandé
2.0
v1.0
Métal Hurlant Comics - Moebius, Bilal, Druillet

Métal Hurlant Comics - Moebius, Bilal, Druillet

36.9K
292
6
#modern art
#bandes dessinées
#Science-fiction
#Style
#Fantastique
#peinture
#FLUX

Métal Hurlant (literal translation: "Howling Metal," "Screaming Metal") is a French comics anthology of science fiction and horror comics stories. Originally created in 1974, the anthologies ceased publication in 1987 but revived between 2002 and 2004 in multilingual editions, and then again in 2020.

How to use

Lora weight

Based on my testing, I recommend trying all weights between 1 and 2 to see which one works best for your use case.

How to Craft Effective Prompts for This Model

First of all, I recommend that you take inspiration from the images posted by the author of the model. It is not a plug and play LoRA and requires correct prompting. If your image doesn't include any content/style relevant to the LoRA, then it will have NO effect at all.
Please note that the words "image" and "illustration" have HUGE weights and should easily trigger the style in case of trouble.

If you're looking to get the best results from this model, here are some tips based on an analysis of the language used in the training data:

1. Focus on Key Subjects and Descriptions:- What to Include: The model is most familiar with terms like "scene", "figure", "creature", "background", and "sky". Descriptive words like "large", "red", "intricate", and "mechanical" also play a big role.

- Example Prompt: "Create a detailed scene with a large, red mechanical creature in the foreground."

2. Use Common Phrases:- Why It Helps: The model understands certain word pairs and phrases very well because they appeared frequently in the training captions. Using these can make your prompts more natural and effective.

- Example Prompt: "The image depicts a fantastical scene set against a vibrant sky."

3. Incorporate Specific Names or Entities:- Targeted Outputs: If your prompt references specific characters, locations, or objects, the model can generate more focused and relevant results.

- Example Prompt: "Illustrate a scene featuring a creature in a mechanical environment."

4. Structure Your Prompts Like Descriptions:- Match the Training Style: The model is used to prompts that describe what’s happening in the image, like “The image depicts...”. Mimicking this style can help the model understand and respond better.

- Example Prompt: "The image shows a large creature in an intricate, blue-colored scene."

5. Experiment and Refine:- Iterate on Your Prompts: Start with these suggestions, then tweak the words and phrases to see what works best. Small changes can sometimes lead to big improvements in the results.

Example prompts you can try with this model:

1. Prompt for a Fantasy Scene:

- "Create a vibrant fantasy scene with a large, red creature standing in the foreground against a mechanical background."

2. Prompt for a Detailed Illustration:

- "Illustrate a complex figure set against an intricate, blue sky with various mechanical structures in the background."

3. Prompt Featuring a Specific Character:

- "Depict the character Moebius exploring a surreal, otherworldly landscape filled with intricate details and a vibrant color palette."

4. Prompt for a Mechanical Creature:

- "Show a large, mechanical creature dominating the scene, with intricate patterns and a deep red color palette."

5. Prompt for a Dreamlike Environment:

- "Design a dreamlike scene with floating orbs and clouds in the sky, featuring a detailed figure surrounded by an ethereal atmosphere."

Dataset Information

Top 20 nouns and adjectives by frequency in the dataset:

  • image: 147

  • scene: 80

  • figure: 59

  • creature: 58

  • large: 55

  • red: 5>

  • background: 50

  • sky: 50

  • various: 45

  • foreground: 4>

  • intricate: 4>

  • color: 42

  • palette: 42

  • figures: 41

  • blue: 40

  • overall: 36

  • structure: 3>

  • mechanical: 3>

  • illustration: 30

  • face: 30

Top 20 collocations by frequency in the dataset:

  • ('to', 'be')

  • ('The', 'image')

  • ('appears', 'to')

  • ('image', 'depicts')

  • ('color', 'palette')

  • ('there', 'are')

  • ('In', 'the')

  • ('depicts', 'a')

  • ('the', 'foreground')

  • ('theres', 'a')

  • ('dominated', 'by')

  • ('The', 'overall')

  • ('seems', 'to')

  • ('palette', 'is')

  • ('a', 'large')

  • ('There', 'are')

  • ('graphic', 'novel')

  • ('shades', 'of')

  • ('is', 'dominated')

  • ('scene', 'set')

Voir la traduction

Notes & Commentaires

5.0 /5
0 Notes

Pas encore reçu suffisamment d'évaluations ou de commentaires

no-data
Aucune donnée disponible
A
Chatter avec le modèle
Annonce
2023-06-03
Publier un modèle
2024-08-27
Mettre à jour les informations du modèle
Détails du modèle
Type
LORA
Temps de Publication
2024-08-27
Modèle Basique
Flux.1 D
Introduction de version

This version uses the same dataset as the SD1.5 LoRA but this time is captioned with THUDM/cogvlm2-llama3-chat-19B-int4 · Hugging Face
Please consider this version as a first draft

Périmètre de la licence
Source: civitai

1. Modèle partagé uniquement à l'apprentissage et au partage. Droits d'auteur et interprétation finale réservés à l'auteur original.

2. Auteur souhaitant revendiquer le modèle : Contactez officiellement SeaArt AI pour l'authentification. Nous protégeons les droits de chaque auteur. Cliquer pour revendiquer

Périmètre de la licence de création
Génération d'images en ligne
Effectuer une fusion
Autoriser le téléchargement
Périmètre de la licence de commerce
Les images générées peuvent être vendues ou utilisées à des fins commerciales
La revente ou la vente après fusion du modèle est autorisée.
QR Code
Télécharger l'App SeaArt
Poursuivez votre voyage de création AI sur mobile