Detail
Rekomendasi
RealStable H
RealStable F
RealStable F.A.E
RealStable F.A
RealStable E
RealStable D4
RealStable C Final
RealStable B
Real Stable A
Real Stable XL

Real Stable XL

15.9K
33
1
#Anime
#Character
#Photorealistic
#Perempuan
#woman
#Karakter permainan
#Realistis
#video game

Hires. fix

from 552x616 to 1104x1232

NEW HERE:

https://github.com/lllyasviel/stable-diffusion-webui-forge

Stable Diffusion WebUI Forge

Stable Diffusion WebUI Forge is a platform on top of Stable Diffusion WebUI (based on Gradio) to make development easier, optimize resource management, and speed up inference.

The name "Forge" is inspired from "Minecraft Forge". This project is aimed at becoming SD WebUI's Forge.

Compared to original WebUI (for SDXL inference at 1024px), you can expect the below speed-ups:

  1. If you use common GPU like 8GB vram, you can expect to get about 30~45% speed up in inference speed (it/s), the GPU memory peak (in task manager) will drop about 700MB to 1.3GB, the maximum diffusion resolution (that will not OOM) will increase about 2x to 3x, and the maximum diffusion batch size (that will not OOM) will increase about 4x to 6x.

  2. If you use less powerful GPU like 6GB vram, you can expect to get about 60~75% speed up in inference speed (it/s), the GPU memory peak (in task manager) will drop about 800MB to 1.5GB, the maximum diffusion resolution (that will not OOM) will increase about 3x, and the maximum diffusion batch size (that will not OOM) will increase about 4x.

  3. If you use powerful GPU like 4090 with 24GB vram, you can expect to get about 3~6% speed up in inference speed (it/s), the GPU memory peak (in task manager) will drop about 1GB to 1.4GB, the maximum diffusion resolution (that will not OOM) will increase about 1.6x, and the maximum diffusion batch size (that will not OOM) will increase about 2x.

  4. If you use ControlNet for SDXL, the maximum ControlNet count (that will not OOM) will increase about 2x, the speed with SDXL+ControlNet will speed up about 30~45%.

Another very important change that Forge brings is Unet Patcher. Using Unet Patcher, methods like Self-Attention Guidance, Kohya High Res Fix, FreeU, StyleAlign, Hypertile can all be implemented in about 100 lines of codes.

Thanks to Unet Patcher, many new things are possible now and supported in Forge, including SVD, Z123, masked Ip-adapter, masked controlnet, photomaker, etc.

No need to monkeypatch UNet and conflict other extensions anymore!

Forge also adds a few samplers, including but not limited to DDPM, DDPM Karras, DPM++ 2M Turbo, DPM++ 2M SDE Turbo, LCM Karras, Euler A Turbo, etc. (LCM is already in original webui since 1.7.0).

Finally, Forge promise that we will only do our jobs. Forge will never add unnecessary opinioned changes to the user interface. You are still using 100% Automatic1111 WebUI.

Settings I used for model

To load target model

SDXLClipModel

Sampling Steps40-50

CFG scale: 7-20

Sampling Method: DPM++ 3M SDE Exponential+DPM++ 2M SDE Turbo

Ratio:1024x1024

Lihat terjemahan

Rating dan Ulasan

5.0 /5
0 rating

Belum menerima penilaian atau komentar yang cukup

M
Pengumuman
2024-03-03
Memposting model
2024-04-02
Perbarui informasi model
Detail model
Jenis
Checkpoint
Waktu publikasi
2024-04-02
Model Dasar
SDXL 1.0
Cakupan Lisensi
Model Source: civitai

1. Hak untuk model yang diposting ulang adalah milik pembuat aslinya.

2. Pencipta asli yang ingin mengklaim model harap hubungi staf SeaArt AI melalui saluran resmi. Klik untuk mengklaim

Cakupan Lisensi Penciptaan
Gambar Online
Melakukan Penggabungan
Izinkan Unduhan
Lisensi Komersial
Gambar yang dihasilkan dapat dijual atau digunakan untuk tujuan komersial
Izinkan model dijual kembali atau dijual setelah penggabungan
QR Code
Unduh SeaArt App
Lanjutkan perjalanan kreasi AI Anda di perangkat mobile