Detail
Rekomendasi
V1
Object Taped To Wall

Object Taped To Wall

179
71
156
#Style
#artistic

Originally posted to HuggingFace by ProGamerGov

This fine-tuned Stable Diffusion v1.5 model was trained for 2000 iterations with a batch size of 4, on a selection of photos of things taped to wall. Training was performed using ShivamShrirao/diffusers with full precision, prior-preservation loss, the train-text-encoder feature, and the new 1.5 MSE VAE from Stability AI. A total of 2100 regularization / class images were used from here. Regularization images were generated using the prompt "artwork style" with 50 DPM++ 2S a Karras steps and a CFG of 7, using the MSE VAE. A negative prompt of "text" was also used for this dataset.

Use the tokens ttw style in your prompts for the effect. Note that the effect also appears to occur at a much weaker strength on prompts that steer the output towards specific artistic styles.

This model will likely not perform well on taping objects that are not traditionally able to be taped to walls.

Example images were generated with the v1 2000 iteration model using DPM++ 2S a Karras:

ttw style, <object> taped to wall

Lihat terjemahan

Rating dan Ulasan

-- /5
0 rating

Belum menerima penilaian atau komentar yang cukup

no-data
Tidak Ada Data
avatar
ManPainter
906
18.5K
Berbicara dengan model
Pengumuman
2023-04-01
Memposting model
2026-01-29
Perbarui informasi model
Detail model
Jenis
Checkpoint
Waktu publikasi
2023-03-20
Model Dasar
SD 1.5
Kata Pemicu
ttw style
Salin
Cakupan Lisensi
Model Source: civitai

1. Hak untuk model yang diposting ulang adalah milik pembuat aslinya.

2. Pencipta asli yang ingin mengklaim model harap hubungi staf SeaArt AI melalui saluran resmi. Klik untuk mengklaim

Cakupan Lisensi Penciptaan
Gambar Online
Melakukan Penggabungan
Izinkan Unduhan
Lisensi Komersial
Gambar yang dihasilkan dapat dijual atau digunakan untuk tujuan komersial
Izinkan model dijual kembali atau dijual setelah penggabungan
QR Code
Unduh SeaArt App
Lanjutkan perjalanan kreasi AI Anda di perangkat mobile