Detail
Rekomendasi
v2
v1
hyper bottom heavy

hyper bottom heavy

213.4K
743
1.7K
#Anime
#concept
#thighs
#thick
#booty
#thicc
#thick thighs
#wide
#bottom heavy
#hyper bottom heavy
#
#hyper
#Anime
#concept
#thighs
#thick
#booty
#thicc
#thick thighs
#wide
#bottom heavy
#hyper bottom heavy
#
#hyper

This LoRA model is similar to my HyperAss model but focuses more on thick thighs and . Great for that pear shaped look. You can always increase the LoRA strength for a bigger effect.

If you don't want crazy large sizes, just keep the LoRA strength at 1. It does in-between sizes just fine.

v2 Changelog 2023/06/13:, its been almost 5 months o.o

  • Improved the overall quality. Less overcooked results at high strength.

  • The shape should be even more pear like now, smaller top and larger bottom in general.

  • Added size tags, similar to my other models. See tag data attached with model in the downloads section for details. A few tags are pretty important.

  • Uses Kohya's LoCon LoRA but does not require any additional extensions to run.

  • Doubled the dataset size.

  • Added tag "from front" to assist with front facing shots, and a few others in the tag docs

Notes:

I used this to train my image tagging classifiers for sizes
https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification

Lihat terjemahan

Rating dan Ulasan

5.0 /5
0 rating

Belum menerima penilaian atau komentar yang cukup

no-data
Tidak Ada Data
T
Berbicara dengan model
Pengumuman
2023-03-20
Memposting model
2023-06-14
Perbarui informasi model
Detail model
Jenis
LORA
Waktu publikasi
2023-06-14
Model Dasar
SD 1.4
Kata Pemicu
bottomheavy
huge
gigantic
thick thighs
massive thighs
hyper thighs
Salin
Perkenalan versi

Similar to my last released model, this one should be less damaging to the overall style while also making it easier to achieve large sizes.

Also I improved the accuracy of the tags, and doubled the dataset size to ~400 images.

Increasing LoRA strength is actually useful for achieving larger sizes in combination with the right size tags.

Training Details:

  • ~400 images

  • 160 epocs

  • learning rate 2e->

  • text encoder LR 1e->

  • base model Av>

  • clip skip 2

  • random flip

  • tag drop chance 0.15

  • network dropout 0.25

  • bucketing at 768

  • dim 32

  • alpha 16

  • 225 tokens

  • cosine with restarts

  • training with tags, tags attached next to model download

    • use the new weighted captions + dropout in Kohya that way more important tags were trained at a higher weight (weight of:2).

  • Kohya LoRA LoCon, does not require any additional extensions to use

Cakupan Lisensi
Model Source: civitai

1. Hak untuk model yang diposting ulang adalah milik pembuat aslinya.

2. Pencipta asli yang ingin mengklaim model harap hubungi staf SeaArt AI melalui saluran resmi. Klik untuk mengklaim

Cakupan Lisensi Penciptaan
Gambar Online
Melakukan Penggabungan
Izinkan Unduhan
Lisensi Komersial
Gambar yang dihasilkan dapat dijual atau digunakan untuk tujuan komersial
Izinkan model dijual kembali atau dijual setelah penggabungan
QR Code
Unduh SeaArt App
Lanjutkan perjalanan kreasi AI Anda di perangkat mobile