Karya asli

Wan2.2 t2v-KJ

Pembaruan Terakhir:2025-11-05

In text-to-video (T2V) applications, Wan2.2 generates high-resolution, semantically consistent video clips directly from natural language prompts. The model leverages a Mixture of Experts (MoE) architecture and a highly compressed VAE, alongside multi-phase sampling and deep text-visual alignment, to ensure strong correspondence between video content and input text.

Wan2.2 demonstrates robust understanding of complex actions, scenes, and aesthetic demands, delivering visually varied and richly detailed output from both simple and extended narrative prompts. With fast generation speed and low resource requirements, it's well suited for AIGC video creation, storyboarding, and creative advertising.

Terjemahan Sekali Klik
Pratinjau Node 15 nodes
Layar penuh
Klik untuk Memuat Pratinjau Node
Jalankan (141)
Favorit (1)
Unduh (4)
Bagikan
Detail Alur Kerja
Jenis
Alur Kerja
Penilaian
5
Waktu publikasi
2025-10-13
Status
Dapat Dijalankan
Info Node (15)
Komentar
0/400
Total 0 komentar