Dettagli
Raccomandazioni
v1
decoder-v1
alpha3
decoder-alpha3
alpha2
alpha1
decoder-alpha1
alpha0
decoder-alpha0
pre-alpha1
pre-alpha0
decoder-pre-alpha0
SoteDiffusion Wuerstchen3

SoteDiffusion Wuerstchen3

4
1
0
#อนิเมะ
#Base Model

New version is out: https://civitai.com/models/628865/sotediffusion-v2

Anime finetune of Würstchen V3.

This release is sponsored by fal.ai/grants

Trained on 6M images for 3 epochs using 8x A100 80G GPUs.

This model can be used via API with Fal.AI

For more details: https://fal.ai/models/fal-ai/stable-cascade/sote-diffusion


Please refer to Huggingface for SD.Next UI, Diffusers or UNet models:
https://huggingface.co/Disty0/sotediffusion-wuerstchen3
CivitAI page has only the ComfyUI checkpoint models.

Inference Parameters:

Download the Main model (8.14 GB file):

https://civitai.com/api/download/models/563950?type=Model&format=SafeTensor&size=pruned&fp=fp16


Download the Decoder model (4.24 GB file):

https://civitai.com/api/download/models/563892?type=Model&format=SafeTensor&size=pruned&fp=fp16

Positives:

newest, extremely aesthetic, best quality,

Negatives:

very displeasing, worst quality, monochrome, realistic, oldest, loli,

Main:

Sampler: DDPM or DPMPP 2M with SGM Uniform
CFG: 7
Steps: 30 or 40

Decoder:

Sampler: Euler a Karras
CFG: 1 or 1.2
Steps: 10

Compression: 42 (or 32 to 64)

Resolution: 1024x1536, 2048x1152.

Anything works as long as it's a multiply of 128.

Training:

Software used: Kohya SD-Scripts with Stable Cascade branch.
https://github.com/kohya-ss/sd-scripts/tree/stable-cascade

GPU used: 8x Nvidia A100 80GB
GPU hours: 220

Base

parameters | value

  • amp | bf16

  • weights | fp32

  • save weights | fp16

  • resolution | 1024x1024

  • effective batch size | 128

  • unet learning rate | 1e-5

  • te learning rate | 4e-6

  • optimizer | Adafactor

  • images | 6M

  • epochs | 3

Final

parameters | value

  • amp | bf16

  • weights | fp32

  • save weights | fp16

  • resolution | 1024x1024

  • effective batch size | 128

  • unet learning rate | 4e-6

  • te learning rate | none

  • optimizer | Adafactor

  • images | 120K

  • epochs | 16

Dataset:

GPU used for captioning: 1x Intel ARC A770 16GB
GPU hours: 350

Model used for captioning: SmilingWolf/wd-swinv2-tagger-v3

Model used for text: llava-hf/llava-1.5-7b-hf

Command:

python /mnt/DataSSD/AI/Apps/kohya_ss/sd-scripts/finetune/tag_images_by_wd14_tagger.py --model_dir "/mnt/DataSSD/AI/models/wd14_tagger_model" --repo_id "SmilingWolf/wd-swinv2-tagger-v3" --recursive --remove_underscore --use_rating_tags --character_tags_first --character_tag_expand --append_tags --onnx --caption_separator ", " --general_threshold 0.35 --character_threshold 0.50 --batch_size 4 --caption_extension ".txt" ./


dataset name | total images

  • newest : 1.85M

  • recent : 1.38M

  • mid : 993K

  • early : 566K

  • oldest : 160K

  • pixiv : 344K

  • visual novel cg : 231K

  • anime wallpaper : 105K

  • Total: 5.628.499 images

Note:

  • Smallest size is 1280x600 / 768.000 pixels

  • Deduped based on image similarity using czkawka-cli

  • Around 120K very high quality images got intentionally duplicated 5 times, making the total image count 6.2M


Tags:

Tag Format:

Model is trained with random tag order but this is the order in the dataset if you are interested:

aesthetic tags, quality tags, date tags, custom tags, rating tags, character, series, rest of the tags

Date:

  • newest : 2022 to 2024

  • recent : 2019 to 2021

  • mid : 2015 to 2018

  • early : 2011 to 2014

  • oldest : 2005 to 2010

Aesthetic Tags:

Model used: shadowlilac/aesthetic-shadow-2

  • score > 0.90 : extremely aesthetic

  • score > 0.80 : very aesthetic

  • score > 0.70 : aesthetic

  • score > 0.50 : slightly aesthetic

  • score > 0.40 : not displeasing

  • score > 0.30 : not aesthetic

  • score > 0.25 : slightly displeasing

  • score > 0.10 : displeasing

  • rest of them : very displeasing

Quality Tags:

Model used: https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/models/aes-B32-v0.pth

  • score > 0.980 : best quality

  • score > 0.900 : high quality

  • score > 0.750 : great quality

  • score > 0.500 : medium quality

  • score > 0.250 : normal quality

  • score > 0.125 : bad quality

  • score > 0.025 : low quality

  • rest of them : worst quality

Rating Tags:

  • general

  • sensitive

  • nsfw

  • explicit nsfw

Custom Tags:

  • image boards: date,

  • text: The text says "text",

  • characters: character, series

  • pixiv: art by Display_Name,

  • visual novel cg: Full_VN_Name (short_3_letter_name), visual novel cg,

  • anime wallpaper: date, anime wallpaper,

License

SoteDiffusion models falls under Fair AI Public License 1.0-SD license, which is compatible with Stable Diffusion models’ license. Key points:

  • 1. Modification Sharing: If you modify SoteDiffusion models, you must share both your changes and the original license.

  • 2. Source Code Accessibility: If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.

  • 3. Distribution Terms: Any distribution must be under this license or another with similar rules.

  • 4. Compliance: Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.

Notes: Anything not covered by Fair AI license is inherited from Stability AI Non-Commercial license.

Visualizza la traduzione

Valutazioni e recensioni

-- /5
0 valutazioni

Non ancora ricevute valutazioni o commenti sufficienti

no-data
Nessun dato disponibile
avatar
Disty0
18
246
Conversazione con il modello
Annuncio
2024-03-22
Pubblicare modello
2024-06-10
Aggiorna le informazioni del modello
Dettagli modello
Tipo
Checkpoint
Data di pubblicazione
2024-06-10
Modello Base
Stable Cascade
Introduzione alla versione
  • This release is sponsored by fal.ai/grants

  • Trained on 6M images for 3 epochs using 8x A100 80G GPUs.

Ambito di Licenza
Model Source: civitai

1. I diritti dei modelli ripubblicati appartengono ai creatori originali.

2. I creatori originali che desiderano reclamare il proprio modello devono contattare il personale di SeaArt AI tramite canali ufficiali. Clicca per rivendicare

Ambito di Licenza di Creazione
Immagini Online
Effettua una Fusione
Consenti Download
Licenza Commerciale
Le immagini generate possono essere vendute o utilizzate per scopi commerciali
Consenti la rivendita del modello o la vendita dopo la fusione
QR Code
Scarica l'app SeaArt
Continua il tuo viaggio di creazione AI su mobile