詳細
おすすめ
v1.0
MistoLine

MistoLine

0
0
0
#芸術
#ベースモデル
#コントロールネット
#stablediffusion
#SDXL

Control every line!

MistoLine: A Versatile and Robust SDXL-ControlNet Model for Adaptable Line Art Conditioning

MistoLine is an SDXL-ControlNet model that can adapt to any type of line art input, demonstrating high accuracy and excellent stability. It can generate high-quality images (with a short side greater than 1024px) based on user-provided line art of various types, including hand-drawn sketches, different ControlNet line preprocessors, and model-generated outlines. MistoLine eliminates the need to select different ControlNet models for different line preprocessors, as it exhibits strong generalization capabilities across diverse line art conditions.

We developed MistoLine by employing a novel line preprocessing algorithm (Anyline) and retraining the ControlNet model based on the Unet of stabilityai/stable-diffusion-xl-base-1.0, along with innovations in large model training engineering. MistoLine showcases superior performance across different types of line art inputs, surpassing existing ControlNet models in terms of detail restoration, prompt alignment, and stability, particularly in more complex scenarios.

MistoLine maintains consistency with the ControlNet architecture released by lllyasviel, as illustrated in the following schematic diagram:

reference:https://github.com/lllyasviel/ControlNet

More information about ControlNet can be found in the following references:

https://github.com/lllyasviel/ControlNet

https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl

The model is compatible with most SDXL models, except for PlaygroundV2.5 and CosXL. It can be used in conjunction with LCM and other ControlNet models. We have open-sourced the corresponding model weight files for non-commercial use by individual users.

Apply with different line preprocessor

Mistoline compere with other Controlnet

Application examples

Sketch rendering

The following case only utilized MistoLine as the controlnet:

Model rendering

The following case only utilized Anyline as the preprocessor and MistoLine as the controlnet.

ComfyUI Recommended Parameters:
sampler steps:30

CFG:7.0

sampler_name:dpmpp_2m_sde

scheduler:karras

denoise:0.93

controlnet_strength:1.0

stargt_percent:0.0

end_percent:0.9

Checkpoints

• mistoLine_rank256.safetensors : General usage version, for ComfyUI and AUTOMATIC1111-WebUI.

• mistoLine_fp16.safetensors : FP16 weights, for ComfyUI and AUTOMATIC1111-WebUI.

ComfyUI Usage

中国(大陆地区)便捷下载地址:

链接:https://pan.baidu.com/s/1DbZWmGJ40Uzr3Iz9RNBG_w?pwd=8mzs

提取码:8mzs

Citation
@misc{

title={Adding Conditional Control to Text-to-Image Diffusion Models},

author={Lvmin Zhang, Anyi Rao, Maneesh Agrawala},

year={2023},

eprint={2302.05543},

archivePrefix={arXiv},

primaryClass={cs.CV}

}

翻訳を表示

評価とレビュー

-- /5
0 件の評価

まだ十分な評価やレビューが集まっていません

no-data
データなし
お知らせ
2024-07-25
モデルを公開
2024-05-07
モデル情報を更新
モデル詳細
タイプ
Controlnet
投稿日時
2024-05-07
基本モデル
SDXL 1.0
許可範囲
モデルソース: civitai

1.転載モデルは学習・共有目的のみで使用し、著作権は原作者に帰属します

2.モデルの認証は公式チャンネルでご連絡ください。クリエイターの権利保護に努めています クリックして認証

創作許可範囲
オンライン画像生成
統合
ダウンロード
商用利用の許可範囲
生成された画像は販売または商業目的での使用
モデルの転売やモデル統合後の販売
QR Code
SeaArt Appをダウンロード
モバイルでAI創作の旅を続けよう