詳細
おすすめ
v2
v1
hyper bottom heavy

hyper bottom heavy

213.3K
743
1.7K
#アニメ
#concept
#thighs
#thick
#booty
#thicc
#thick thighs
#wide
#ボトムヘビー
#ハイパーボトムヘビー
#
#極端な
#アニメ
#concept
#thighs
#thick
#booty
#thicc
#thick thighs
#wide
#ボトムヘビー
#ハイパーボトムヘビー
#
#極端な

This LoRA model is similar to my HyperAss model but focuses more on thick thighs and . Great for that pear shaped look. You can always increase the LoRA strength for a bigger effect.

If you don't want crazy large sizes, just keep the LoRA strength at 1. It does in-between sizes just fine.

v2 Changelog 2023/06/13:

, its been almost 5 months o.o

  • Improved the overall quality. Less overcooked results at high strength.

  • The shape should be even more pear like now, smaller top and larger bottom in general.

  • Added size tags, similar to my other models. See tag data attached with model in the downloads section for details. A few tags are pretty important.

  • Uses Kohya's LoCon LoRA but does not require any additional extensions to run.

  • Doubled the dataset size.

  • Added tag "from front" to assist with front facing shots, and a few others in the tag docs

Notes:

I used this to train my image tagging classifiers for sizes
https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification

翻訳を表示

評価とレビュー

5.0 /5
0 件の評価

まだ十分な評価やレビューが集まっていません

no-data
データなし
T
モデルと会話する
お知らせ
2023-03-20
モデルを公開
2023-06-14
モデル情報を更新
モデル詳細
タイプ
LORA
投稿日時
2023-06-14
基本モデル
SD 1.4
トリガーワード
bottomheavy
huge
gigantic
thick thighs
massive thighs
hyper thighs
コピー
バージョン紹介

Similar to my last released model, this one should be less damaging to the overall style while also making it easier to achieve large sizes.

Also I improved the accuracy of the tags, and doubled the dataset size to ~400 images.

Increasing LoRA strength is actually useful for achieving larger sizes in combination with the right size tags.

Training Details:

  • ~400 images

  • 160 epocs

  • learning rate 2e-4

  • text encoder LR 1e-4

  • base model Av3

  • clip skip 2

  • random flip

  • tag drop chance 0.15

  • network dropout 0.25

  • bucketing at 768

  • dim 32

  • alpha 16

  • 225 tokens

  • cosine with restarts

  • training with tags, tags attached next to model download

    • use the new weighted captions + dropout in Kohya that way more important tags were trained at a higher weight (weight of:2).

  • Kohya LoRA LoCon, does not require any additional extensions to use

許可範囲
モデルソース: civitai

1.転載モデルは学習・共有目的のみで使用し、著作権は原作者に帰属します

2.モデルの認証は公式チャンネルでご連絡ください。クリエイターの権利保護に努めています クリックして認証

創作許可範囲
オンライン画像生成
統合
ダウンロード
商用利用の許可範囲
生成された画像は販売または商業目的での使用
モデルの転売やモデル統合後の販売
QR Code
SeaArt Appをダウンロード
モバイルでAI創作の旅を続けよう