์ƒ์„ธ ์ •๋ณด
์ถ”์ฒœ
5.1 3D Notebook 64dim ver
2. All Entries LoRA
1. FFusionAI Entry
3. All Entries 64DIM LoRa
4. FFusionAI Entry 64DIM
5. 3D Notebook - 32DIM
CivitAI ๐Ÿ† Style Fusion - FFusionAI Entry (+dataset)

CivitAI ๐Ÿ† Style Fusion - FFusionAI Entry (+dataset)

81
66
427
#fusion
#์Šคํƒ€์ผ
#stylemix
#ffai

CivitAI Style Fusion๐Ÿ†LoRAs

Last update: ๐Ÿš€ CivitAI Lora5 32DIM Notebook with dataset

Last update: ๐Ÿš€ CivitAI Lora3 Configuration - Trained with CivitAI Trainer

๐Ÿš€ Date: 2023-11-10 | Title: CivitAI_64_ALL

๐Ÿ” Key Specifications:

  • Resolution: 1024x1024

  • Architecture: stable-diffusion-xl-v1-base/lora

  • Network Dim/Rank: 64.0, Alpha: 1.0

  • Module: networks.lora

  • Learning Rates: UNet LR & TE LR set to optimal levels

  • Optimizer: Advanced AdamW8bit

  • Epochs & Training: Intensive 10 epochs with 576 batches

๐Ÿ“Š Model Stats:

  • UNet Weight: Mag - 7.602, Str - 0.0187

Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora
Network Dim/Rank: 64.0 Alpha: 1.0
Module: networks.lora
Learning Rate (LR): 0.0005 UNet LR: 0.0005 TE LR: 5e-05
Optimizer: bitsandbytes.optim.adamw.AdamW8bit(weight_decay=0.1)
Scheduler: constant  Warmup steps: 0
Epoch: 10 Batches per epoch: 576 Gradient accumulation steps: 1
Train images: 2304 Regularization images: 0
Multires noise iterations: 6.0 Multires noise discount: 0.3
Min SNR gamma: 5.0 Zero terminal SNR: True Max grad norm: 1.0  Clip skip: 1
Dataset dirs: 1
        [img] 576 images
UNet weight average magnitude: 7.602270778898858
UNet weight average strength: 0.018722912685324843
Text Encoder (1) weight average magnitude: 2.7649271326702607
Text Encoder (1) weight average strength: 0.009535635958680934
Text Encoder (2) weight average magnitude: 2.6905091182810352
Text Encoder (2) weight average strength: 0.007233532415344915

Delve into FFusionAI's approach to AI-driven style synthesis with our newly released LoRA models. Each model has been developed using CivitAI's official trainer, ensuring precision and quality.

๐Ÿ› ๏ธ LoRA Model Overview:

  • LoRA 1 - Lite Version: Designed for quick testing, this model utilizes a small dataset for swift style generation, operating with a 32-dimension capacity.

  • LoRA 2 - Community Fusion: A robust model developed from over 500+ images, submitted by various users for the CivitAI contest. This iteration also features a 32-dimension capacity.

  • LoRA 3 - Enhanced Fidelity: Building upon LoRA 2, this model is further trained with higher dimensions, focusing on improving the overall image quality.

  • LoRA 4 - Comprehensive Style Mash: Our expansive dataset of 1400 images represents a confluence of all FFusionAI submissions. This model undergoes additional UNet training to refine and diversify the generated styles.

1. FFusionAI Style Capture & Fusion Showdown LoRA

๐ŸŽจ Dataset and Training:

Included within the package are curated collections accessible at CivitAI Collections. The training prompts have been crafted with BLIP-2, FLAN-T5-XL, and ViT-H-14.

Please note, original prompts were not utilized for training. Instead, intentional modifications were made using blip2-flan-t5-xl & ViT-H-14/laion2b_s32b_b79k to adjust and enhance the training dataset, which can be reviewed here.

๐Ÿ”„ Further Information:

For a detailed examination of the training datasets, parameters, and model specifications, professionals and enthusiasts are encouraged to explore the metadata provided within the collection.

  • LORA 2

    ๐Ÿš€ CivitAI Configuration Overview - 2023-11-10

๐Ÿš€ Trained with the Official CivitAI Trainer

๐Ÿ“… Date: 2023-11-10

๐Ÿ–ผ๏ธ Title: CivitAI_ALL

๐Ÿ” Resolution: 1024x1024

๐Ÿ—๏ธ Architecture: stable-diffusion-xl-v1-base/lora

โš™๏ธ Key Settings:

  • Network Dim/Rank: 32.0

  • Alpha: 1.0

  • Module: networks.lora

  • Learning Rates: UNet LR - 0.0005, TE LR - 5e-05

  • Optimizer: AdamW8bit (weight_decay=0.1)

  • Epochs & Batches: 10 epochs, 167 batches/epoch

  • Train Images: 576

๐Ÿ“Š Model Stats:

  • UNet Weight: Mag - 3.755, Str - 0.0135

  • Text Encoder (1): Mag - 1.833, Str - 0.0091

  • Text Encoder (2): Mag - 1.836, Str - 0.0071

๐Ÿท๏ธ Prominent Tags:

  • Fusion styles, Artgerm, Beeple

  • Dark fantasy, Official artwork, Pinup art

  • Digital illustration, Fantasy & Sci-fi

  • ...and over 4500 more!

๐ŸŒ FFusion.ai Contact Information

Proudly maintained by Source Code Bulgaria Ltd & Black Swan Technologies.

  • ๐Ÿ“ง For collaborations, inquiries, or support: [email protected]

  • ๐ŸŒ Locations: Sofia | Istanbul | London

Connect with Us:

Our Websites:

๋ฒˆ์—ญ๋ฌธ ๋ณด๊ธฐ

ํ‰์  ๋ฐ ๋ฆฌ๋ทฐ

-- /5
0 ๊ฐœ์˜ ํ‰์ 

์ถฉ๋ถ„ํ•œ ํ‰๊ฐ€๋‚˜ ๋Œ“๊ธ€์„ ๋ฐ›์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.

I
idle
173
3.1K
๊ณต๊ณ 
2024-04-01
๋ชจ๋ธ ๊ฒŒ์‹œ
2023-11-17
๋ชจ๋ธ ์ •๋ณด ์—…๋ฐ์ดํŠธ
๋ชจ๋ธ ์ƒ์„ธ์ •๋ณด
์œ ํ˜•
LORA
๊ฒŒ์‹œ ๋‚ ์งœ
2023-11-17
๊ธฐ๋ณธ ๋ชจ๋ธ
SDXL 1.0
ํŠธ๋ฆฌ๊ฑฐ ๋‹จ์–ด
notebook
book
๋ณต์‚ฌ
๋ฒ„์ „ ์†Œ๊ฐœ

Trained on Civitai Trainer only
An attempt to expand the book image.

https://civitai.com/images/3507510

64dim
ver + dataset

{ "unetLR": 0.0005, "clipSkip": 1, "loraType": "lora", "keepTokens": 0, "networkDim": 64, "numRepeats": 8, "resolution": 1024, "lrScheduler": "cosine_with_restarts", "minSnrGamma": 4, "targetSteps": 3840, "enableBucket": true, "networkAlpha": 1, "optimizerArgs": "weight_decay=0.1", "optimizerType": "AdamW8Bit", "textEncoderLR": 0.00005, "maxTrainEpochs": 10, "shuffleCaption": false, "trainBatchSize": 4, "flipAugmentation": false, "lrSchedulerNumCycles": 3 }

ํ—ˆ๊ฐ€ ๋ฒ”์œ„
๋ชจ๋ธ ์ถœ์ฒ˜: civitai

1. ์žฌ๊ฒŒ์‹œ๋œ ๋ชจ๋ธ์˜ ๊ถŒ๋ฆฌ๋Š” ์› ์ œ์ž‘์ž์—๊ฒŒ ์žˆ์Šต๋‹ˆ๋‹ค.

2. ๋ชจ๋ธ ์›์ž‘์ž๊ฐ€ ๋ชจ๋ธ์„ ์ธ์ฆ๋ฐ›์œผ๋ ค๋ฉด ๊ณต์‹ ์ฑ„๋„์„ ํ†ตํ•ด SeaArt.AI ์ง์›์—๊ฒŒ ๋ฌธ์˜ํ•˜์„ธ์š”. ์ €ํฌ๋Š” ๋ชจ๋“  ์ฐฝ์ž‘์ž์˜ ๊ถŒ๋ฆฌ๋ฅผ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•ด ๋…ธ๋ ฅํ•ฉ๋‹ˆ๋‹ค. ์ธ์ฆํ•˜๋Ÿฌ ์ด๋™

์ฐฝ์ž‘ ํ—ˆ๊ฐ€ ๋ฒ”์œ„
์˜จ๋ผ์ธ ์ƒ๋ฐฉ์†ก
ํ˜ผํ•ฉ ์ง„ํ–‰
๋‹ค์šด๋กœ๋“œ ํ—ˆ์šฉ
์ƒ์—…์  ํ—ˆ๊ฐ€ ๋ฒ”์œ„
์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€๋ฅผ ํŒ๋งคํ•˜๊ฑฐ๋‚˜ ์ƒ์—…์  ๋ชฉ์ ์œผ๋กœ ์‚ฌ์šฉ ๊ฐ€๋Šฅ
๋ชจ๋ธ์˜ ์žฌํŒ๋งค ๋˜๋Š” ์œตํ•ฉ ํ›„ ํŒ๋งค ํ—ˆ์šฉ
QR Code
SeaArt ์•ฑ ๋‹ค์šด๋กœ๋“œ
๋ชจ๋ฐ”์ผ์—์„œ AI ์ฐฝ์ž‘ ์—ฌ์ •์„ ๊ณ„์†ํ•˜์„ธ์š”