Import matplotlib.pyplot as plt import networkx as nx # Crear un grafo dirigido
![import matplotlib.pyplot as plt
import networkx as nx
# Crear un grafo dirigido
g = nx.Digraph()
# Añadir nodos con sus respectivas etiquetas en español
g.add_node("1", label="Start")
g.add_node("2", label="Current Power Distribution")
g.add_node("3", label="Consumer Assessment")
g.add_node("4", label="Optimization with AI")
g.add_node("5", label="Optimized Distribution")
g.add_node("6", label="Vehicle Application")
# Conectar los nodos
g.add_edges_From([("1", "2"), ("2", "3"), ("3", "4"), ("4", "5"), ("5", "6")])
# Get the positions for the nodes in a pos hierarchical layout = nx.spring_Layout(g, seed=42)
# Draw the nx graph.draw(g, pos, with_labels=False, node_Size=3000, node_Color="lightgreen", Font_Size=10)
# Add labels in Spanish labels = nx.get_node_attributes(g, 'label')
nx.draw_networkx_labels(g, pos, labels=labels, Font_Size=9, Font_Color="Black")
# Add plt title.title("AI-powered Electric Vehicle Energy Optimization Scheme", FontSize=12)
plt.show()](https://image.cdn2.seaart.me/2024-08-24/cr54lmle878c73aij6eg/b2280dff6b6d610ace8176ae2645012c_high.webp)

import matplotlib.pyplot as plt import networkx as nx # Crear un grafo dirigido g = nx.Digraph() # Añadir nodos con sus respectivas etiquetas en español g.add_node("1", label="Start") g.add_node("2", label="Current Power Distribution") g.add_node("3", label="Consumer Assessment") g.add_node("4", label="Optimization with AI") g.add_node("5", label="Optimized Distribution") g.add_node("6", label="Vehicle Application") # Conectar los nodos g.add_edges_From([("1", "2"), ("2", "3"), ("3", "4"), ("4", "5"), ("5", "6")]) # Get the positions for the nodes in a pos hierarchical layout = nx.spring_Layout(g, seed=42) # Draw the nx graph.draw(g, pos, with_labels=False, node_Size=3000, node_Color="lightgreen", Font_Size=10) # Add labels in Spanish labels = nx.get_node_attributes(g, 'label') nx.draw_networkx_labels(g, pos, labels=labels, Font_Size=9, Font_Color="Black") # Add plt title.title("AI-powered Electric Vehicle Energy Optimization Scheme", FontSize=12) plt.show()
프롬프트
Copy prompts
import matplotlib
.
pyplot as plt
import networkx as nx
# Crear un grafo dirigido
g = nx
.
Digraph()
# Añadir nodos con sus respectivas etiquetas en español
g
.
add_node("1"
,
label="Start")
g
.
add_node("2"
,
label="Current Power Distribution")
g
.
add_node("3"
,
label="Consumer Assessment")
g
.
add_node("4"
,
label="Optimization with AI")
g
.
add_node("5"
,
label="Optimized Distribution")
g
.
add_node("6"
,
label="Vehicle Application")
# Conectar los nodos
g
.
add_edges_From([("1"
,
"2")
,
("2"
,
"3")
,
("3"
,
"4")
,
("4"
,
"5")
,
("5"
,
"6")])
# Get the positions for the nodes in a pos hierarchical layout = nx
.
spring_Layout(g
,
seed=42)
# Draw the nx graph
.
draw(g
,
pos
,
with_labels=False
,
node_Size=3000
,
node_Color="lightgreen"
,
Font_Size=10)
# Add labels in Spanish labels = nx
.
get_node_attributes(g
,
'label')
nx
.
draw_networkx_labels(g
,
pos
,
labels=labels
,
Font_Size=9
,
Font_Color="Black")
# Add plt title
.
title("AI-powered Electric Vehicle Energy Optimization Scheme"
,
FontSize=12)
plt
.
show()
정보
Checkpoint & LoRA

Checkpoint
SeaArt Infinity
#SeaArt Infinity
0개의 댓글
0
0
0