상세 정보
추천
v1.0
Adriana Chechik SDXL

Adriana Chechik SDXL

1.3K
102
542
#어디 남자
#유명 인사
#

A LoRA for Adriana Chechik.

Process

  • Images (71)

    • Focus

      • 30 "full" body (waist/knees up)

      • 17 upper body ( and head)

      • 18 close up (head and shoulders)

      • 6 weird angles/poses (range from "full" body to upper body)

    • Aspect ratio

      • 30 1:1

      • 41 3:>

    • Content (varied...)

      • faces (1 eyes closed, half smiling, 1 eyeglasses)

      • lighting

      • clothing

      • makeup

      • background

      • pose

    • Misc

      • I try to exclude any images that have a busy/complex scene/background. Abnormal clothing, hand gestures, etc. are cropped out when possible. My rule of thumb is that if I wouldn't want the image to be generated by the LoRA, I don't include it in the dataset. There are some exceptions to this rule, but it is a good starting point to trim the dataset.

      • As many duplicate clothing items, expressions, poses, pieces of jewelry, etc. are excluded as possible, but it can often be hard to avoid this.

      • Images are cropped by hand and left at whatever # of pixels achieves the desired final image. They are kept to 3:4, 4:3, or 1:1 aspect ratios.

      • Many others have commented that 71 images is unnecessary, and that 20 or so will do. I prefer to be in the 40-80 range.

  • Captions

    • All begin with "adriana chechik, a photo of a woman..."

    • I describe the clothing, jewelry, lighting, pose, angle, background, expression, makeup, and any other information I do not want showing up in the LoRA gens (abnormal hair color, for example) in sentence form.

    • I do not describe things I do want to show up in the LoRA, like eye color, hair color, skin tone, body proportions, etc.

    • I have experimented with adding a fake word "ohwx" to the captions with varying results. I did not do so for this LoRA.

  • Training Params

    • model: DreamshaperXL

    • text_encoder_lr: 0.000>

    • unet_lr: 0.000>

    • learning_rate: 0.000>

    • network_dim: 256

    • network_alpha: 1

    • lr_scheduler: constant

    • optimizer_type: Adafactor

    • train_batch_size: 1

    • dataset repeats: 20

    • epochs: 10 (sometimes up to 12 if I have a highly varied dataset)

    • max_train_steps: 20 10 # of images (so for this one, it was 20 10 71 = 14,200)

  • How is it so small?

    • After training is complete, I am left with a 1.7gb safetensors file. I use the kohya gui to resize the lora with a rank of 256. This spits out a ~18mb safetensors file that is nearly identical to the 1.7gb file in practice.

I'm sure I missed something here, so let me know if there's any other info that would be useful.

번역문 보기

평점 및 리뷰

5.0 /5
0 개의 평점

충분한 평가나 댓글을 받지 못했습니다.

no-data
데이터 없음
T
tomdvs
149
3.0K
모델과 대화하기
공고
2024-06-08
모델 게시
2023-08-08
모델 정보 업데이트
모델 상세정보
유형
LORA
게시 날짜
2023-08-08
기본 모델
SDXL 1.0
트리거 단어
Adriana Chechik
복사
허가 범위
모델 출처: civitai

1. 재게시된 모델의 권리는 원 제작자에게 있습니다.

2. 모델 원작자가 모델을 인증받으려면 공식 채널을 통해 SeaArt.AI 직원에게 문의하세요. 저희는 모든 창작자의 권리를 보호하기 위해 노력합니다. 인증하러 이동

창작 허가 범위
온라인 생방송
혼합 진행
다운로드 허용
상업적 허가 범위
생성된 이미지를 판매하거나 상업적 목적으로 사용 가능
모델의 재판매 또는 융합 후 판매 허용
QR Code
SeaArt 앱 다운로드
모바일에서 AI 창작 여정을 계속하세요