상세 정보
추천
v2
v1
hyper bottom heavy

hyper bottom heavy

213.2K
742
1.7K
#애니메이션
#개념
#thighs
#thick
#booty
#thicc
#thick thighs
#wide
# 바텀 헤비
#과도하게 아래쪽이 무거운
#
#하이퍼
#애니메이션
#개념
#thighs
#thick
#booty
#thicc
#thick thighs
#wide
# 바텀 헤비
#과도하게 아래쪽이 무거운
#
#하이퍼

This LoRA model is similar to my HyperAss model but focuses more on thick thighs and . Great for that pear shaped look. You can always increase the LoRA strength for a bigger effect.

If you don't want crazy large sizes, just keep the LoRA strength at 1. It does in-between sizes just fine.

v2 Changelog 2023/06/13:

, its been almost 5 months o.o

  • Improved the overall quality. Less overcooked results at high strength.

  • The shape should be even more pear like now, smaller top and larger bottom in general.

  • Added size tags, similar to my other models. See tag data attached with model in the downloads section for details. A few tags are pretty important.

  • Uses Kohya's LoCon LoRA but does not require any additional extensions to run.

  • Doubled the dataset size.

  • Added tag "from front" to assist with front facing shots, and a few others in the tag docs

Notes:

I used this to train my image tagging classifiers for sizes
https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification

번역문 보기

평점 및 리뷰

5.0 /5
0 개의 평점

충분한 평가나 댓글을 받지 못했습니다.

no-data
데이터 없음
T
모델과 대화하기
공고
2023-03-20
모델 게시
2023-06-14
모델 정보 업데이트
모델 상세정보
유형
LORA
게시 날짜
2023-06-14
기본 모델
SD 1.4
트리거 단어
bottomheavy
huge
gigantic
thick thighs
massive thighs
hyper thighs
복사
버전 소개

Similar to my last released model, this one should be less damaging to the overall style while also making it easier to achieve large sizes.

Also I improved the accuracy of the tags, and doubled the dataset size to ~400 images.

Increasing LoRA strength is actually useful for achieving larger sizes in combination with the right size tags.

Training Details:

  • ~400 images

  • 160 epocs

  • learning rate 2e-4

  • text encoder LR 1e-4

  • base model Av3

  • clip skip 2

  • random flip

  • tag drop chance 0.15

  • network dropout 0.25

  • bucketing at 768

  • dim 32

  • alpha 16

  • 225 tokens

  • cosine with restarts

  • training with tags, tags attached next to model download

    • use the new weighted captions + dropout in Kohya that way more important tags were trained at a higher weight (weight of:2).

  • Kohya LoRA LoCon, does not require any additional extensions to use

허가 범위
모델 출처: civitai

1. 재게시된 모델의 권리는 원 제작자에게 있습니다.

2. 모델 원작자가 모델을 인증받으려면 공식 채널을 통해 SeaArt.AI 직원에게 문의하세요. 저희는 모든 창작자의 권리를 보호하기 위해 노력합니다. 인증하러 이동

창작 허가 범위
온라인 생방송
혼합 진행
다운로드 허용
상업적 허가 범위
생성된 이미지를 판매하거나 상업적 목적으로 사용 가능
모델의 재판매 또는 융합 후 판매 허용
QR Code
SeaArt 앱 다운로드
모바일에서 AI 창작 여정을 계속하세요