원작

완 CineScale 로라-고해상도-KJ

마지막 업데이트:2025-10-22

Although visual diffusion models have progressed rapidly, the scarcity of high‑resolution training data and the high computational cost mean most systems are trained at relatively low resolutions (e.g., 512×512). Consequently, high‑fidelity image/video synthesis often suffers from texture repetition and loss of fine details; once the target resolution exceeds the training regime, the added high‑frequency content amplifies cumulative errors, further degrading visual quality.

an inference strategy tailored for high‑resolution generation. Without tedious tuning, it allows pretrained diffusion models to surpass resolution ceilings, covering text‑to‑image and text‑to‑video while extending to image‑to‑video and video‑to‑video. Empirically, it can produce 8K images with zero fine‑tuning and achieve 4K video with minimal LoRA adaptation, offering a cost‑effective path to high‑resolution results for film and visual design workflows.

원클릭 번역
노드 미리보기 16 nodes
전체 화면
노드 미리보기를 로드하려면 클릭하세요
실행 (94)
수집 (5)
다운로드 (4)
공유하기
워크플로우 세부 정보
유형
워크플로우
평가
0
게시 날짜
2025-10-14
상태
실행 가능
노드 정보 (16)
댓글
0/400
0개의 댓글