Details
Related
v1.0
SPO-SDXL_4k-p_10ep_LoRA_webui

SPO-SDXL_4k-p_10ep_LoRA_webui

202.9K
219
2.6K
#Base Model

Step-aware Preference Optimization: Aligning Preference with Denoising Performance at Each Step

Arxiv Paper

Github Code

Project Page

Abstract

Recently, Direct Preference Optimization (DPO) has extended its success from aligning large language models (LLMs) to aligning text-to-image diffusion models with human preferences. Unlike most existing DPO methods that assume all diffusion steps share a consistent preference order with the final generated images, we argue that this assumption neglects step-specific denoising performance and that preference labels should be tailored to each step's contribution.

To address this limitation, we propose Step-aware Preference Optimization (SPO), a novel post-training approach that independently evaluates and adjusts the denoising performance at each step, using a step-aware preference model and a step-wise resampler to ensure accurate step-aware supervision. Specifically, at each denoising step, we sample a pool of images, find a suitable win-lose pair, and, most importantly, randomly select a single image from the pool to initialize the next denoising step. This step-wise resampler process ensures the next win-lose image pair comes from the same image, making the win-lose comparison independent of the previous step. To assess the preferences at each step, we train a separate step-aware preference model that can be applied to both noisy and clean images.

Our experiments with Stable Diffusion v1.5 and SDXL demonstrate that SPO significantly outperforms the latest Diffusion-DPO in aligning generated images with complex, detailed prompts and enhancing aesthetics, while also achieving more than 20× times faster in training efficiency. Code and model: https://rockeycoss.github.io/spo.github.io/

Model Description

This model is fine-tuned from stable-diffusion-xl-base-1.0. It has been trained on 4,000 prompts for 10 epochs. This checkpoint is a LoRA checkpoint. For more information, please visit here

Citation

If you find our work useful, please consider giving us a star and citing our work.

@article{liang2024step,
  title={Step-aware Preference Optimization: Aligning Preference with Denoising Performance at Each Step},
  author={Liang, Zhanhao and Yuan, Yuhui and Gu, Shuyang and Chen, Bohan and Hang, Tiankai and Li, Ji and Zheng, Liang},
  journal={arXiv preprint arXiv:2406.04314},
  year={2024}
}

View Translation

Rating & Review

-- /5
0 Ratings

Not enough ratings or reviews received yet

no-data
No data available
R
Chat with the model
Notice
2024-06-12
Publish Model
2024-06-20
Update Model Info
Model Details
Type
LORA
Publish Time
2024-06-12
Base Model
SDXL 1.0
License Scope
Model Source: civitai

1. The rights to reposted models belong to original creators.

2. Original creators should contact SeaArt.AI staff through official channels to claim their models. We are committed to protecting every creator's rights. Click to Claim

Creative License Scope
Online Image Generation
Merge
Allow Downloads
Commercial License Scope
Sale or Commercial Use of Generated Images
Resale of Models or Their Sale After Merging
QR Code
Download SeaArt App
Continue your AI creation journey on mobile devices