


https://twitter.com/camenduru
🔥https://discord.gg/k5BwmmvJJU
🥳https://patreon.com/camenduru
Model Colab: https://github.com/camenduru/ios-emoji-xl-model-colab
Model Mirror: https://huggingface.co/camenduru/ios-emoji-xl/blob/main/ios_emoji_xl_v2_lora_webui.safetensors
Model Dataset: https://huggingface.co/camenduru/ios-emoji-xl/blob/main/dataset_160x160_images.zip
Thanks to https://github.com/samuelngs/apple-emoji-linux for the 160x160 pixel emojis ❤
Thanks to https://replicate.com ❤
Training Logs:
Trained with 160x160 pixel ios v16.4 emojis 😋
GPU = Nvidia A40 (Large) at https://replicate.com
Num examples = 4129
Num batches each epoch = 1033
Num Epochs = 1
Instantaneous batch size per device = 4
Total train batch size (w. parallel, distributed & accumulation) = 4
Gradient Accumulation steps = 1
Total optimization steps = 1000
Total Run time: 45.46 minutes
Total Cost: $1.98Replicate LoRA to WebUI LoRA Converter
pip install safetensors==0.3.3
import re
from safetensors.torch import load_file, save_file
checkpoint = load_file('/content/ui/models/Lora/ios_emoji_xl_v2_lora.safetensors')
new_dict = dict()
for idx, key in enumerate(checkpoint):
new_key = re.('\.processor\.', '_', key)
new_key = re.('mid_block\.', 'mid_block_', new_key)
new_key = re.('_lora.up.', '.lora_up.', new_key)
new_key = re.('_lora.down.', '.lora_down.', new_key)
new_key = re.('\.(\d+)\.', '_\\1_', new_key)
new_key = re.('to_out', 'to_out_0', new_key)
new_key = 'lora_unet_' + new_key
new_dict[new_key] = checkpoint[key]
save_file(new_dict, 'ios_emoji_xl_v2_lora_webui.safetensors')Thanks to fofr ❤ for the idea.
fofr's model: https://twitter.com/fofrAI/status/1698741974835065171
1. The rights to reposted models belong to original creators.
2. Original creators should contact SeaArt.AI staff through official channels to claim their models. We are committed to protecting every creator's rights. Click to Claim
