From stable_diffusion import StableDiffusionPipeline import torch from PIL impor
![from stable_diffusion import StableDiffusionPipeline
import torch
from PIL import Image
# Load the Stable Diffusion model
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-4")
# Define the prompt for the Japanese city scene
prompt = (
"In a lively Japanese city street, the go-go dancer and Bitcoin trader are having a humorous adventure. The dancer, now in a quirky Japanese-themed outfit with Bitcoin accents, playfully interacts with street performers and vendors. They are surrounded by colorful neon signs and amusing cultural elements. The scene is vibrant and whimsical, with exaggerated expressions and playful poses. The lighting reflects the bustling city vibe, creating a humorous and lively atmosphere."
)
# Configuration settings
clip_guidance_scale = 16 # Slightly lower to add a playful feel
hr_scale = 3.0 # Balanced resolution
hr_upscaler = "R-ESRGAN"
latent_shift = torch.randn(1, 4, 64, 64) * 0.03 # Slight variation for humor
cross_attention_strength = 1.5 # Focus on playful details
shallow_depth_of_field = True # Emphasize interaction
lighting_style = "bright and colorful" # Vibrant lighting effects
color_match_strength = 1.5 # Enhanced color matching
perlin_noise_scale = 0.03 # Subtle noise for texture
fractal_noise = False
# Generate the image
image = pipe(
prompt=prompt,
clip_guidance_scale=clip_guidance_scale,
hr_scale=hr_scale,
hr_upscaler=hr_upscaler,
latent_shift=latent_shift,
cross_attention_strength=cross_attention_strength,
shallow_depth_of_field=shallow_depth_of_field,
lighting_style=lighting_style,
color_match_strength=color_match_strength,
noise="perlin",
noise_scale=perlin_noise_scale,
fractal_noise=fractal_noise
).images[0]
# Save the generated image
image.save("japanese_city_adventure.png")](https://image.cdn2.seaart.me/2025-06-09/d1335tde878c73cq5k5g-1/8396d1ee704d2c9db5a0f7b3d4cfa566_high.webp)
Generation Data
Registro
Prompts
Copiar prompts
from stable_diffusion import StableDiffusionPipeline
import torch
from PIL import Image
# Load the Stable Diffusion model
pipe = StableDiffusionPipeline
.
from_pretrained("stable-diffusion-v1-4")
# Define the prompt for the Japanese city scene
prompt = (
"In a lively Japanese city street
,
the go-go dancer and Bitcoin trader are having a humorous adventure
.
The dancer
,
now in a quirky Japanese-themed outfit with Bitcoin accents
,
playfully interacts with street performers and vendors
.
They are surrounded by colorful neon signs and amusing cultural elements
.
The scene is vibrant and whimsical
,
with exaggerated expressions and playful poses
.
The lighting reflects the bustling city vibe
,
creating a humorous and lively atmosphere
.
"
)
# Configuration settings
clip_guidance_scale = 16 # Slightly lower to add a playful feel
hr_scale = 3
.
0 # Balanced resolution
hr_upscaler = "R-ESRGAN"
latent_shift = torch
.
randn(1
,
4
,
64
,
64) * 0
.
03 # Slight variation for humor
cross_attention_strength = 1
.
5 # Focus on playful details
shallow_depth_of_field = True # Emphasize interaction
lighting_style = "bright and colorful" # Vibrant lighting effects
color_match_strength = 1
.
5 # Enhanced color matching
perlin_noise_scale = 0
.
03 # Subtle noise for texture
fractal_noise = False
# Generate the image
image = pipe(
prompt=prompt
,
clip_guidance_scale=clip_guidance_scale
,
hr_scale=hr_scale
,
hr_upscaler=hr_upscaler
,
latent_shift=latent_shift
,
cross_attention_strength=cross_attention_strength
,
shallow_depth_of_field=shallow_depth_of_field
,
lighting_style=lighting_style
,
color_match_strength=color_match_strength
,
noise="perlin"
,
noise_scale=perlin_noise_scale
,
fractal_noise=fractal_noise
)
.
images[0]
# Save the generated image
image
.
save("japanese_city_adventure
.
png")
INFO
Checkpoint & LoRA

Checkpoint
SeaArt Infinity
#Deusa
#SeaArt Infinity
comentário(s)
0
0
0