Подробности
Рекомендовано
RealStable H
RealStable F
RealStable F.A.E
RealStable F.A
RealStable E
RealStable D4
RealStable C Final
RealStable B
Real Stable A
Real Stable XL

Real Stable XL

15.9K
33
1
#Аниме
#Персонаж
#фотореалистичный
#Женщина
#Где мужчина
#Игровой персонаж
#Реализм
#Видеоигра

Hires. fix

from 552x616 to 1104x1232

NEW HERE:

https://github.com/lllyasviel/stable-diffusion-webui-forge

Stable Diffusion WebUI Forge

Stable Diffusion WebUI Forge is a platform on top of Stable Diffusion WebUI (based on Gradio) to make development easier, optimize resource management, and speed up inference.

The name "Forge" is inspired from "Minecraft Forge". This project is aimed at becoming SD WebUI's Forge.

Compared to original WebUI (for SDXL inference at 1024px), you can expect the below speed-ups:

  1. If you use common GPU like 8GB vram, you can expect to get about 30~45% speed up in inference speed (it/s), the GPU memory peak (in task manager) will drop about 700MB to 1.3GB, the maximum diffusion resolution (that will not OOM) will increase about 2x to 3x, and the maximum diffusion batch size (that will not OOM) will increase about 4x to 6x.

  2. If you use less powerful GPU like 6GB vram, you can expect to get about 60~75% speed up in inference speed (it/s), the GPU memory peak (in task manager) will drop about 800MB to 1.5GB, the maximum diffusion resolution (that will not OOM) will increase about 3x, and the maximum diffusion batch size (that will not OOM) will increase about 4x.

  3. If you use powerful GPU like 4090 with 24GB vram, you can expect to get about 3~6% speed up in inference speed (it/s), the GPU memory peak (in task manager) will drop about 1GB to 1.4GB, the maximum diffusion resolution (that will not OOM) will increase about 1.6x, and the maximum diffusion batch size (that will not OOM) will increase about 2x.

  4. If you use ControlNet for SDXL, the maximum ControlNet count (that will not OOM) will increase about 2x, the speed with SDXL+ControlNet will speed up about 30~45%.

Another very important change that Forge brings is Unet Patcher. Using Unet Patcher, methods like Self-Attention Guidance, Kohya High Res Fix, FreeU, StyleAlign, Hypertile can all be implemented in about 100 lines of codes.

Thanks to Unet Patcher, many new things are possible now and supported in Forge, including SVD, Z123, masked Ip-adapter, masked controlnet, photomaker, etc.

No need to monkeypatch UNet and conflict other extensions anymore!

Forge also adds a few samplers, including but not limited to DDPM, DDPM Karras, DPM++ 2M Turbo, DPM++ 2M SDE Turbo, LCM Karras, Euler A Turbo, etc. (LCM is already in original webui since 1.7.0).

Finally, Forge promise that we will only do our jobs. Forge will never add unnecessary opinioned changes to the user interface. You are still using 100% Automatic1111 WebUI.

Settings I used for model

To load target model

SDXLClipModel

Sampling Steps40-50

CFG scale: 7-20

Sampling Method: DPM++ 3M SDE Exponential+DPM++ 2M SDE Turbo

Ratio:1024x1024

Просмотреть перевод

Оценки и отзывы

5.0 /5
0 оценок

Еще не получено достаточно оценок или комментариев

M
Объявление
2024-03-03
Публикация модели
2024-04-02
Обновить информацию о модели
Детали модели
Тип
Checkpoint
Время публикации
2024-04-02
Базовая модель
SDXL 1.0
Область действия лицензии
Источник: civitai

1. Права на репостнутые модели принадлежат оригинальным создателям.

2. Для подтверждения авторства модели создателям следует обратиться к сотрудникам SeaArt AI через официальные каналы. Нажмите, чтобы подтвердить

Диапазон лицензий на создание
Прямая трансляция
Смешение
Разрешить загрузку
Коммерческая лицензия
Сгенерированные изображения можно продавать или использовать в коммерческих целях
Разрешить перепродажу моделей или продажу после интеграции
QR Code
Скачать приложение SeaArt
Продолжайте путешествие по AI-творчеству на мобильном устройстве