รายละเอียด
แนะนำ
0.577215
Bayesian Merger Extension

Bayesian Merger Extension

0
1
0
#merge

sd-webui-bayesian-merger

What is this?

An opinionated take on stable-diffusion models-merging automatic-optimisation.

The main idea is to treat models-merging procedure as a black-box model with 26 parameters: one for each block plus base_alpha (note that for the moment clip_skip is set to 0).

We can then try to apply black-box optimisation techniques, in particular we focus on Bayesian optimisation with a Gaussian Process emulator.

Read more here, here and here.

The optimisation process is split in two phases:

1. exploration: here we sample (at random for now, with some heuristic in the future) the 26-parameter hyperspace, our block-weights. The number of samples is set by the

--init_points argument. We use each set of weights to merge the two models we use the merged model to generate batch_size * number of payloads images which are then scored.

2. exploitation: based on the exploratory phase, the optimiser makes an idea of where (i.e. which set of weights) the optimal merge is.

This information is used to sample more set of weights --n_iters number of times. This time we don't sample all of them in one go. Instead, we sample once, merge the models,

generate and score the images and update the optimiser knowledge about the merging space. This way the optimiser can adapt the strategy step-by-step.

At the end of the exploitation phase, the set of weights scoring the highest score are deemed to be the optimal ones.

Juicy features

- wildcards support

- TPE or Bayesian Optimisers. cf. Bergstra et al. 2011 for a comparison

- UNET visualiser

- convergence plot

OK, How Do I Use It In Practice?

Head to the wiki for all the instructions to get you started.

ดูการแปล

การให้คะแนนและความคิดเห็น

-- /5
0 คะแนน

ยังไม่ได้รับคะแนนหรือความคิดเห็นเพียงพอ

S
s1dlx
11
289
ประกาศ
2024-07-25
เผยแพร่โมเดล
2023-03-30
อัปเดตข้อมูลโมเดล
รายละเอียดโมเดล
ประเภท
Other
เวลาโพสต์
2023-03-30
โมเดลพื้นฐาน
SD 1.5
การแนะนำเวอร์ชัน

ขอบเขตการอนุญาต
แหล่งที่มา: civitai

1. สิทธิ์ของโมเดลที่โพสต์ซ้ำเป็นของผู้สร้างต้นฉบับ

2. ผู้สร้างต้นฉบับที่ต้องการรับรองโมเดล โปรดติดต่อเจ้าหน้าที่ SeaArt AI ผ่านช่องทางทางการ คลิกเพื่อรับรอง

ขอบเขตการอนุญาตสร้างสรรค์
ถ่ายทอดสดออนไลน์
ผสมผสาน
อนุญาตให้ดาวน์โหลด
ขอบเขตการอนุญาตเชิงพาณิชย์
รูปภาพที่สร้างขึ้นสามารถขายหรือใช้เพื่อวัตถุประสงค์ทางการค้า
อนุญาตให้โมเดลขายต่อหรือขายหลังจากการรวม
QR Code
ดาวน์โหลดแอป SeaArt
ดำเนินการสร้างสรรค์ด้วย AI ต่อไปบนมือถือ