Chi tiết
Gợi Ý
5.1 3D Notebook 64dim ver
2. All Entries LoRA
1. FFusionAI Entry
3. All Entries 64DIM LoRa
4. FFusionAI Entry 64DIM
5. 3D Notebook - 32DIM
CivitAI 🏆 Style Fusion - FFusionAI Entry (+dataset)

CivitAI 🏆 Style Fusion - FFusionAI Entry (+dataset)

81
66
427
#fusion
#Style
#stylemix
#ffai

CivitAI Style Fusion🏆LoRAs

Last update: 🚀 CivitAI Lora5 32DIM Notebook with dataset

Last update: 🚀 CivitAI Lora3 Configuration - Trained with CivitAI Trainer

🚀 Date: 2023-11-10 | Title: CivitAI_64_ALL

🔍 Key Specifications:

  • Resolution: 1024x1024

  • Architecture: stable-diffusion-xl-v1-base/lora

  • Network Dim/Rank: 64.0, Alpha: 1.0

  • Module: networks.lora

  • Learning Rates: UNet LR & TE LR set to optimal levels

  • Optimizer: Advanced AdamW8bit

  • Epochs & Training: Intensive 10 epochs with 576 batches

📊 Model Stats:

  • UNet Weight: Mag - 7.602, Str - 0.0187

Resolution: 1024x1024 Architecture: stable-diffusion-xl-v1-base/lora
Network Dim/Rank: 64.0 Alpha: 1.0
Module: networks.lora
Learning Rate (LR): 0.0005 UNet LR: 0.0005 TE LR: 5e-05
Optimizer: bitsandbytes.optim.adamw.AdamW8bit(weight_decay=0.1)
Scheduler: constant  Warmup steps: 0
Epoch: 10 Batches per epoch: 576 Gradient accumulation steps: 1
Train images: 2304 Regularization images: 0
Multires noise iterations: 6.0 Multires noise discount: 0.3
Min SNR gamma: 5.0 Zero terminal SNR: True Max grad norm: 1.0  Clip skip: 1
Dataset dirs: 1
        [img] 576 images
UNet weight average magnitude: 7.602270778898858
UNet weight average strength: 0.018722912685324843
Text Encoder (1) weight average magnitude: 2.7649271326702607
Text Encoder (1) weight average strength: 0.009535635958680934
Text Encoder (2) weight average magnitude: 2.6905091182810352
Text Encoder (2) weight average strength: 0.007233532415344915

Delve into FFusionAI's approach to AI-driven style synthesis with our newly released LoRA models. Each model has been developed using CivitAI's official trainer, ensuring precision and quality.

🛠️ LoRA Model Overview:

  • LoRA 1 - Lite Version: Designed for quick testing, this model utilizes a small dataset for swift style generation, operating with a 32-dimension capacity.

  • LoRA 2 - Community Fusion: A robust model developed from over 500+ images, submitted by various users for the CivitAI contest. This iteration also features a 32-dimension capacity.

  • LoRA 3 - Enhanced Fidelity: Building upon LoRA 2, this model is further trained with higher dimensions, focusing on improving the overall image quality.

  • LoRA 4 - Comprehensive Style Mash: Our expansive dataset of 1400 images represents a confluence of all FFusionAI submissions. This model undergoes additional UNet training to refine and diversify the generated styles.

1. FFusionAI Style Capture & Fusion Showdown LoRA

🎨 Dataset and Training:

Included within the package are curated collections accessible at CivitAI Collections. The training prompts have been crafted with BLIP-2, FLAN-T5-XL, and ViT-H-14.

Please note, original prompts were not utilized for training. Instead, intentional modifications were made using blip2-flan-t5-xl & ViT-H-14/laion2b_s32b_b79k to adjust and enhance the training dataset, which can be reviewed here.

🔄 Further Information:

For a detailed examination of the training datasets, parameters, and model specifications, professionals and enthusiasts are encouraged to explore the metadata provided within the collection.

  • LORA 2

    🚀 CivitAI Configuration Overview - 2023-11-10

🚀 Trained with the Official CivitAI Trainer

📅 Date: 2023-11-10

🖼️ Title: CivitAI_ALL

🔍 Resolution: 1024x1024

🏗️ Architecture: stable-diffusion-xl-v1-base/lora

⚙️ Key Settings:

  • Network Dim/Rank: 32.0

  • Alpha: 1.0

  • Module: networks.lora

  • Learning Rates: UNet LR - 0.0005, TE LR - 5e-05

  • Optimizer: AdamW8bit (weight_decay=0.1)

  • Epochs & Batches: 10 epochs, 167 batches/epoch

  • Train Images: 576

📊 Model Stats:

  • UNet Weight: Mag - 3.755, Str - 0.0135

  • Text Encoder (1): Mag - 1.833, Str - 0.0091

  • Text Encoder (2): Mag - 1.836, Str - 0.0071

🏷️ Prominent Tags:

  • Fusion styles, Artgerm, Beeple

  • Dark fantasy, Official artwork, Pinup art

  • Digital illustration, Fantasy & Sci-fi

  • ...and over 4500 more!

🌐 FFusion.ai Contact Information

Proudly maintained by Source Code Bulgaria Ltd & Black Swan Technologies.

  • 📧 For collaborations, inquiries, or support: [email protected]

  • 🌍 Locations: Sofia | Istanbul | London

Connect with Us:

Our Websites:

Xem bản dịch

Đánh giá và nhận xét

-- /5
0 đánh giá

Chưa nhận đủ đánh giá hoặc bình luận

I
idle
173
3.1K
Thông báo
2024-04-01
Đăng mô hình
2023-11-17
Cập nhật thông tin mô hình
Chi tiết mô hình
Loại
LORA
Thời gian đăng tải
2023-11-17
Mô Hình Cơ Bản
SDXL 1.0
Từ Kích Hoạt
notebook
book
Sao chép
Giới thiệu phiên bản

Trained on Civitai Trainer only
An attempt to expand the book image.

https://civitai.com/images/3507510

64dim
ver + dataset

{ "unetLR": 0.0005, "clipSkip": 1, "loraType": "lora", "keepTokens": 0, "networkDim": 64, "numRepeats": 8, "resolution": 1024, "lrScheduler": "cosine_with_restarts", "minSnrGamma": 4, "targetSteps": 3840, "enableBucket": true, "networkAlpha": 1, "optimizerArgs": "weight_decay=0.1", "optimizerType": "AdamW8Bit", "textEncoderLR": 0.00005, "maxTrainEpochs": 10, "shuffleCaption": false, "trainBatchSize": 4, "flipAugmentation": false, "lrSchedulerNumCycles": 3 }

Phạm Vi Giấy Phép
Model Source: civitai

1. Quyền đối với các mô hình được đăng lại thuộc về người sáng tạo ban đầu.

2. Người sáng tạo gốc muốn xác nhận mô hình vui lòng liên hệ nhân viên SeaArt AI qua kênh chính thức. Nhấp để xác nhận

Phạm Vi Giấy Phép Tạo Dựng
Hình Ảnh Trực Tuyến
Thực Hiện Kết Hợp
Cho phép tải xuống
Giấy Phép Thương Mại
Hình ảnh được tạo có thể bán hoặc sử dụng cho mục đích thương mại
Cho phép bán lại hoặc bán sau khi hợp nhất
QR Code
Tải xuống ứng dụng SeaArt
Tiếp tục hành trình sáng tạo AI trên thiết bị di động