详情
推荐
Q4_0_v2
Q4_1_v2
Q5_0_v2
Q5_1_v2
Q8_0_v2
(old)Q4_0_v1
GGUF: FastFlux (Flux.1-Schnell Merged with Flux.1-Dev)

GGUF: FastFlux (Flux.1-Schnell Merged with Flux.1-Dev)

5.8K
179
6.4K
#基础模型
#merge
#base models
#通量.1
#flux1.d
#flux1.年代
#gguf
#FLUX

[Note: ????? the download to get the GGUF. Civit doesn't support it natively, hence this workaround]

Flux1.D merged in Flux1.S. It can generate good-quality images (better than Schnell) with just 4 steps, and the quality further improves with more steps, while consuming a very low amount of VRAM. Q_4_0 can produce 1024x1024 images in 45 seconds on my 11GB 1080ti, while using around 6.5 Gigs of VRAM.

It can be used in ComfyUI with this custom node or with Forge UI. See https://github.com/lllyasviel/stable-diffusion-webui-forge/discussions/1050 to learn more about Forge UI GGUF support and also where to download the VAE, clip_l and t5xxl models.

Which model should I download?

[Current situation: Using the updated Forge UI and Comfy UI (GGUF node) I can run Q8_0 on my 11GB 1080ti.]

Download the one that fits in your VRAM. The additional inference cost is quite small if the model fits in the GPU. Size order is Q4_0 < Q4_1 < Q5_0 < Q5_1 < Q8_0.

  • Q4_0 and Q4_1 should fit in 8 GB VRAM

  • Q5_0 and Q5_1 should fit in 11 GB VRAM

  • Q8_0 if you have more!

Note: With CPU offloading, you will be able to run a model even if doesn't fit in your VRAM.

LoRA usage tips

The model seems to work pretty well with LoRAs (tested in Comfy). But you might need to increase the number of steps a little (8-10).

Updates

V2: I created the original (v1) from an fp8 checkpoint. Due to double quantization, it accumulated more errors. So I found that v1 couldn't produce sharp images. For v2 I manually merged the bf16 Dev and Schnell checkpoints and then made the GGUF. This version can produce more details and much crisper results.

All the license terms associated with Flux.1 Dev and Flux.1 Schnell apply.

PS: Credit goes to jice and comfy.org for the merge recipe. I used a slightly modified version of https://github.com/city96/ComfyUI-GGUF/blob/main/tools/convert.py to create this.

查看译文

评分与评论

-- /5
0个评分

尚未收到足够的评分或评论

no-data
暂无数据
N
与模型对话
公告
2024-08-19
发布模型
2024-08-20
更新模型信息
模型详情
类型
Checkpoint
发布时间
2024-08-20
基础模型
Flux.1 S
版本介绍

I created the original (v1) from an fp8 checkpoint. Due to double quantization it accumulated more error. So I found that v1 couldn't produce sharp images. For v2 I manually merged the bf16 Dev and Schnell checkpoints and then made the GGUF. This version can produce more details and much more crisper results.

许可范围
来源: civitai

1. 转载模型仅供学习与交流分享,其版权及最终解释权归原作者。

2. 模型原作者如需认领模型,请通过官方渠道联系海艺AI工作人员进行认证。我们致力于保护每一位创作者的权益。 点击去认领

创作许可范围
在线生图
进行融合
允许下载
商业许可范围
生成图片可出售或用于商业目的
允许模型转售或融合后出售
QR Code
下载SeaArt App
在移动端继续你的AI创作之旅