Import cv2 From MatplotLib Import Pyplot As PLT # Upload the image image
![import cv2
From MatplotLib Import Pyplot As PLT
# Upload the image
image = cv2.imread('path/to/image.jpg')
# Load the pre-trained face detection model
modelo_deteccao = cv2. CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Convert the image to grayscale
imagem_cinza = cv2.cvtColor(image, cv2. COLOR_BGR2GRAY)
# Detect the faces in the image
faces = modelo_deteccao.detectMultiScale(imagem_cinza, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
# Check if faces have been found
if len(faces) > 0:
# Select only the first face found
x, y, w, h = faces[0]
# Crop the face region
face = image[y:y+h, x:x+w]
# Resize the face to the appearance of 16 years
rosto_redimensionado = cv2.resize(face, (0, 0), fx=0.8, fy=0.8)
# Load the template body image
modelo_corpo = cv2.imread('path/to/imagem_modelo.jpg')
# Resize the template body to the desired size
modelo_corpo_redimensionado = cv2.resize(modelo_corpo, (w, h))
# Merge the resized face with the template body
imagem_final = cv2.addWeighted(rosto_redimensionado, 0.5, modelo_corpo_redimensionado, 0.5, 0)
# Display the final image
plt.imshow(cv2.cvtColor(imagem_final, cv2. COLOR_BGR2RGB))
plt.axis('off')
plt.show()
else:
print("No face was found in the image.")](https://image.cdn2.seaart.me/2024-09-22/crns76le878c73bj18pg/afe6e444-6af4-420a-b9f9-73a1e4eebcc7_high.webp)
Prompts
Copy
import cv2
From MatplotLib Import Pyplot As PLT
# Upload the image
image = cv2
.
imread('path/to/image
.
jpg')
# Load the pre-trained face detection model
modelo_deteccao = cv2
.
CascadeClassifier(cv2
.
data
.
haarcascades + 'haarcascade_frontalface_default
.
xml')
# Convert the image to grayscale
imagem_cinza = cv2
.
cvtColor(image
,
cv2
.
COLOR_BGR2GRAY)
# Detect the faces in the image
faces = modelo_deteccao
.
detectMultiScale(imagem_cinza
,
scaleFactor=1
.
1
,
minNeighbors=5
,
minSize=(30
,
30))
# Check if faces have been found
if len(faces) > 0:
# Select only the first face found
x
,
y
,
w
,
h = faces[0]
# Crop the face region
face = image[y:y+h
,
x:x+w]
# Resize the face to the appearance of 16 years
rosto_redimensionado = cv2
.
resize(face
,
(0
,
0)
,
fx=0
.
8
,
fy=0
.
8)
# Load the template body image
modelo_corpo = cv2
.
imread('path/to/imagem_modelo
.
jpg')
# Resize the template body to the desired size
modelo_corpo_redimensionado = cv2
.
resize(modelo_corpo
,
(w
,
h))
# Merge the resized face with the template body
imagem_final = cv2
.
addWeighted(rosto_redimensionado
,
0
.
5
,
modelo_corpo_redimensionado
,
0
.
5
,
0)
# Display the final image
plt
.
imshow(cv2
.
cvtColor(imagem_final
,
cv2
.
COLOR_BGR2RGB))
plt
.
axis('off')
plt
.
show()
else:
print("No face was found in the image
.
")
INFO
Checkpoint & LoRA

Checkpoint
Protogen x3.4 (Photorealism) Official Release

LORA
Bdelphine-Lora-760x1024-V2

LORA
Nudify XL: Better Bodies
0 comment
0
0
0