From stable_diffusion import StableDiffusionPipeline import torch from PIL impor
![from stable_diffusion import StableDiffusionPipeline
import torch
from PIL import Image
# Load the Stable Diffusion model
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-4")
pipe = pipe.to("cuda") # Use GPU if available
# Define the prompt for Mezo Whale
prompt_whale = (
"A comical depiction of a whale symbolizing large Bitcoin holders in the Mezo ecosystem. "
"The whale is lounging in a luxurious underwater Bitcoin vault, surrounded by Bitcoin bars, wearing a top hat and monocle. "
"The background includes satirical crypto elements and vibrant designs."
)
# Configuration settings
clip_guidance_scale = 20 # Strong guidance for focus
hr_scale = 4.0 # High-resolution scaling
hr_upscaler = "R-ESRGAN" # High-quality upscaling
latent_shift = torch.randn(1, 4, 64, 64) * 0.02 # Subtle variation for dynamic effect
shallow_depth_of_field = True # Shallow depth of field for subject focus
lighting_style = "modern and bright" # Modern lighting effects
color_match_strength = 1.5 # Balanced color matching
noise_scale = 0.02 # Noise level for texture
fractal_noise = True # Adds fractal noise for enhanced texture
# Generate the image for Mezo Whale
image_whale = pipe(
prompt=prompt_whale,
clip_guidance_scale=clip_guidance_scale,
hr_scale=hr_scale,
hr_upscaler=hr_upscaler,
latent_shift=latent_shift,
shallow_depth_of_field=shallow_depth_of_field,
lighting_style=lighting_style,
color_match_strength=color_match_strength,
noise="perlin",
noise_scale=noise_scale,
fractal_noise=fractal_noise
).images[0]
# Save the generated image
filename_whale = "mezo_whale.png"
image_whale.save(filename_whale)
print(f"Saved image: {filename_whale}")](https://image.cdn2.seaart.me/2024-08-30/cr91rute878c73antfc0-2/4bba9112cbab125d3e54a8dc0f511419_high.webp)

from stable_diffusion import StableDiffusionPipeline import torch from PIL import Image # Load the Stable Diffusion model pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-4") pipe = pipe.to("cuda") # Use GPU if available # Define the prompt for Mezo Whale prompt_whale = ( "A comical depiction of a whale symbolizing large Bitcoin holders in the Mezo ecosystem. " "The whale is lounging in a luxurious underwater Bitcoin vault, surrounded by Bitcoin bars, wearing a top hat and monocle. " "The background includes satirical crypto elements and vibrant designs." ) # Configuration settings clip_guidance_scale = 20 # Strong guidance for focus hr_scale = 4.0 # High-resolution scaling hr_upscaler = "R-ESRGAN" # High-quality upscaling latent_shift = torch.randn(1, 4, 64, 64) * 0.02 # Subtle variation for dynamic effect shallow_depth_of_field = True # Shallow depth of field for subject focus lighting_style = "modern and bright" # Modern lighting effects color_match_strength = 1.5 # Balanced color matching noise_scale = 0.02 # Noise level for texture fractal_noise = True # Adds fractal noise for enhanced texture # Generate the image for Mezo Whale image_whale = pipe( prompt=prompt_whale, clip_guidance_scale=clip_guidance_scale, hr_scale=hr_scale, hr_upscaler=hr_upscaler, latent_shift=latent_shift, shallow_depth_of_field=shallow_depth_of_field, lighting_style=lighting_style, color_match_strength=color_match_strength, noise="perlin", noise_scale=noise_scale, fractal_noise=fractal_noise ).images[0] # Save the generated image filename_whale = "mezo_whale.png" image_whale.save(filename_whale) print(f"Saved image: {filename_whale}")
Prompts
Copier les Paramètres
from stable_diffusion import StableDiffusionPipeline
import torch
from PIL import Image
# Load the Stable Diffusion model
pipe = StableDiffusionPipeline
.
from_pretrained("stable-diffusion-v1-4")
pipe = pipe
.
to("cuda") # Use GPU if available
# Define the prompt for Mezo Whale
prompt_whale = (
"A comical depiction of a whale symbolizing large Bitcoin holders in the Mezo ecosystem
.
"
"The whale is lounging in a luxurious underwater Bitcoin vault
,
surrounded by Bitcoin bars
,
wearing a top hat and monocle
.
"
"The background includes satirical crypto elements and vibrant designs
.
"
)
# Configuration settings
clip_guidance_scale = 20 # Strong guidance for focus
hr_scale = 4
.
0 # High-resolution scaling
hr_upscaler = "R-ESRGAN" # High-quality upscaling
latent_shift = torch
.
randn(1
,
4
,
64
,
64) * 0
.
02 # Subtle variation for dynamic effect
shallow_depth_of_field = True # Shallow depth of field for subject focus
lighting_style = "modern and bright" # Modern lighting effects
color_match_strength = 1
.
5 # Balanced color matching
noise_scale = 0
.
02 # Noise level for texture
fractal_noise = True # Adds fractal noise for enhanced texture
# Generate the image for Mezo Whale
image_whale = pipe(
prompt=prompt_whale
,
clip_guidance_scale=clip_guidance_scale
,
hr_scale=hr_scale
,
hr_upscaler=hr_upscaler
,
latent_shift=latent_shift
,
shallow_depth_of_field=shallow_depth_of_field
,
lighting_style=lighting_style
,
color_match_strength=color_match_strength
,
noise="perlin"
,
noise_scale=noise_scale
,
fractal_noise=fractal_noise
)
.
images[0]
# Save the generated image
filename_whale = "mezo_whale
.
png"
image_whale
.
save(filename_whale)
print(f"Saved image: {filename_whale}")
Info
Checkpoint & LoRA

Checkpoint
SeaArt Infinity
#Dessin animé
#Furry
#SeaArt Infinity
0 commentaire(s)
0
0
0